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Prologue

This book is a report on four years of research for a PhD degree that I did in a project
called INCREMENTAL PARSER GENERATION AND CONTEXT-SENSITIVE DISAMBIGUATION:
A MULTIDISCIPLINARY PERSPECTIVE. The aim of this project is to build a bridge between
knowledge about and techniques for language description in Software Engineering and
Computational Linguistics. The train of thought to be explored was that in Computer
Science, as well as in Linguistics, the languages in consideration have elements of
non-context-freeness, but the approaches to dealing with such properties are rather
different. Linguistics could benefit from the knowledge of efficient parsing techniques,
such as the ‘incremental’ GLR parsing from [Rek92]. Some elements of non-context-
freeness in computer languages are the offside rule in Miranda [Tur90] and freely
definable operator precedences such as in Prolog. In Computer Science it is even
common practice to work with systems that are not capable of describing any context-
free language: in traditional LALR-driven analysis using tools like YACC, operator
precedences are treated in a rather old-fashioned, ad hoc manner; it was thought that
here Software Engineering could benefit from linguistic experience; a key concept in
unifying the trans-context-free methods in the twofields was that of a DISAMBIGUATION

phase defined on PARSE FORESTS that are the output of a context-free analysis. The
idea then was to make a thorough assessment of the question precisely which types
and which amounts of context-sensitivity are necessary to handle the non-context-free
elements of both computer languages and natural languages, and to develop, based
on this experience, a syntactic basis which would serve both as an improvement of
the software engineering environment ASF+SDF [Kli93] and as a basis for linguistic
analysis.

The project has been carried out in two lines of research; one concentrating on
methods for syntax definition in a Software Engineering context, carried out by EELCO

VISSER, reported on in his PhD thesis [Vis97], and the other, reported in this book,
concentrating on problems of a linguistic nature.

Whereas in the Software Engineering part, a shift from the syntactical phase to
a disambiguation phase turned out to be desirable, the linguistic counterpart showed
a rather opposite movement; instead of analyzing the notion of ‘disambiguation’,
my work can be characterized as eliminating any form of disambiguation that would
be required by a system that is based on a form of CONTEXT-FREE BACKBONE, by
increasing the power of the syntactic basis from context-free grammar to structurally
more powerful mechanisms, eliminating among other things the problem of grammars
not being OFF-LINE PARSABLE (section 7.3). However, there is also an important
analogy in the methods developed in Visser’s perspective and mine; both the shift in the
ASF+SDF group in several phases from an initially typically LALR-driven analysis to
a scannerless context-free analysis conceptually followed by context-sensitivefiltering
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6 Prologue

operations defining such things as lexical keywords and precedence definitions, and
the increase of the structural capacities of underlying linguistic formalisms studied
in this thesis are aimed at increased RE-USABILITY or MODULARITY. In Software
Engineering, one thus avoids having to rewrite considerable parts of a grammar when
adapting an engineering tool to a slightly different dialect of a computer language
(say Cobol); in Linguistics, one has the advantage that languages with similar deep
structures, but essentially different surface orders, such as Dutch (SOV) vs. English
(SVO) can optimally share a semantic phase based on simple � expressions.1 Several
choices made in this thesis are motivated by the wish to build natural language systems
relying on equational specification methods for post-syntactic processing, and altough
this is probably not visible at the surface, the frequent and pleasant discussions I had
with Eelco have certainly had an encouraging influence on my work.

*

It is good for the understanding of this text to let it begin with a brief chronological
explanation of how my research has progressed; not least because in order to present
the material I have gathered over the years in a continuous story-line, it turned out to
be hardly necessary to change the order of the subjects as they presented themselves.

This Prologue then serves to acknowledge, in a concrete manner, the interest,
help and guidance I received from various people, as well as to introduce the reader
briefly to the points of departure of this work, before s/he proceeds to the introductory
chapter 1, which more or less necessarily starts with a discouraging amount of formal
background material before getting to the point where these points of departure have
been properly illustrated and an overview of the three parts of this book can be given
in some detail.

*

In March 1994, my supervisor JAN VAN EIJCK arranged for me to go on a visit to
STEPHEN PULMAN at SRI Cambridge, for a short project to get acquainted with work
on natural language grammars. In Cambridge, I modified a unification grammar
that Pulman wrote for the pan-European FraCaS project, to accept Dutch. Later I
generalized this to a single grammar that accepts both English and Dutch.

This was a first point where the structural similarity of Indo-European languages,
and hence the issue of re-usability and modularity showed its importance. An example
was that I had to generalize the system that described auxiliary inversion to the more
general Dutch case of verb second, which required a step of considerable orthogonal-
ization, or in other words, required a number of ad hoc descriptions to be worked out
in a more general manner.

A question that puzzled me henceforth was why movement of noun phrases was
done through gap-threading, while verb movement was modelled with feature-driven
selection of different context-free rules. One reason for this was easily identified—the
simplicity of English allows for such a solution in the case of auxiliary inversion. When,

1Being aimed primarily at bridging gaps in the interface of various grammar systems to work in semantics
by unifying syntactic structures underlying different languages, this thesis, with a small exception in section
10.4, does not go into issues in semantics itself.
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motivated by this worry, I tried to implement verb movement using gap threading, it
became clear that such a move lifted not only the computational difficulty, but also the
intuitive complexity of grammars to problematic levels.

An important aspect of feature grammars that also struck me, is that one realm
of feature structures is used both for moving around structural representations, and to
describe simple finite attributes such as agreement, tense and selectional properties,
but that there is a dissimilarity in the way in which the feature system is used for these
two different purposes: namely that between unboundedly long list constructions, and
that of finite records of finite-range attributes.

Finally, working on the FraCaS grammar gave an insight into feature-style gram-
mar writing, in particular gap-threading methods. I picked up the notion of unprin-
cipled feature hacking, in part because by the time I didn’t understand the finesse of
the principles underlying the rules that Pulman’s system silently obeyed—a danger of
rule based grammars falling into the wrong hands (in casu mine).

Briefly summarized, the project provided the following four hints, the last of which
is a consequence I did not draw immediately at the time:

A There is more structural similarity across (Indo-European) languages than
many current approaches to syntax exploit.

B For reasons of orthogonality, different forms of movement should not be
described by different formal mechanisms. Because of its steep grammar
complexity curve, slash-threading seems to be a cumbersome candidate for a
universal mechanism underlying movement.

C Surface order should be separated from deep-structural (attribute) description;
after doing so, every deep structure node will need to bear only boundedly
much feature information.

D Rule-based grammars are not only lack explanatory capacity; they are also a
burden in practice.

The hints A–C, together with the aim tofind a mechanism that would enable one to write
grammars (especially for Dutch) with an output interface that was indistinguishable
from the output of a context-free parser, led, in the second half of 1994, to an early
formulation of the LITERAL MOVEMENT GRAMMARS (LMG) that play a major rôle in
this thesis. At this point I wish to thank JASPER KAMPERMAN for his enthusiastic
reaction to a first outline of literal movement, without which I may not have guessed
that it was worth further investigation.

The LMG framework claimed that the bulk of movement phenomena, an important
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example of which is the crossed dependency structure (1) in Dutch,

...dat Frank Julia koffie zag drinken
    that                           coffee  saw  drink−INF

...that Frank saw Julia drink coffee

(1)

can be described by merely moving around terminal strings, rather than moving around,
or sharing, complete phrase structure trees. The need to use unboundedly deep feature
structures that move around complete structural analyses then disappears and is taken
over by the structural backbone that is generated by a grammar close in style to a CFG.

A short example LMG fragment in the style of [Gro95b] is (2), which describes
the behaviour of the RAISING VERBS responsible for the crossed dependencies in Dutch.

S � � � �dat NP m VP�m�
VP�nm� � VR �NP�n� VP�m�
VP�n� � VT �NP�n�

(2)

Such an LMG behaves very much like a CFG, but a nonterminal can have ARGUMENTS

that are instantiated in an LMG derivation as terminal strings, hence the name literal
movement. In this grammar, the argument of the VP is the sequence of all object
NPs. Hence, the VP constituent only yields a sequence of verbs, and postpones the
realization of the objects until it is used in the S production, producing such sentences
as (3).

� � � dat Frank

mz �� �
Julia koffie �VP�m� zag drinken �(3)

SLASH ITEMS like �NP�n� in the example fragment generate the empty string, but
instantiate variables that construct the terminal strings in argument positions. The best
way to illustrate the slash items at this stage is to show the derivation of the VP in the
example (3).

VR � zag NP � Julia

VT � drinken NP � koffie

VP�koffie� � drinken

VP�Julia koffie� � zag drinken

(4)

An important property of this fragment is that the tree analyses it produces are identical
to the ones produced by a simple context-free grammar for English—the English VP
order saw Julia drink coffee can be read at the top of derivation (4). This gave some
depth to hint A formulated above. Hint B was also satisfied, because verb-second
phenomena could be modelled analogously. By adding an extra argument to the VP
that is instantiated with the finite verb (zag in this case), the grammars could produce
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the declarative (5) and interrogative (6) variants of the Dutch sentence.

Frank

vz���
zag

mz �� �
Julia koffie �VP�m�v� drinken �

Frank saw Julia drink coffee
(5)

vz���
Zag Frank

mz �� �
Julia koffie �VP�m�v� drinken � ?

Did Frank see Julia drink coffee?
(6)

Shortly after these first designs of LMG, GERTJAN VAN NOORD suggested a selection
of background reading in similar “light-weight” grammatical formalisms. The ability
to describe topicalization and verb second however seemed to lift the utility of LMG
above these similar approaches, such as HEAD GRAMMAR (HG), which only gave an
account of Dutch subordinate clauses in isolation that was not straightforward to extend
to sentence level.

In the following years I wrote several papers about LMG, and it was only much
later, after several phases of simplification to the design of the LMG formalism, that I
properly read the papers suggested by Van Noord, and found large similarities between
LMG and existing TUPLE-BASED grammar formalisms such as LINEAR CONTEXT-FREE

REWRITING SYSTEMS or MULTIPLE CONTEXT-FREE GRAMMARS (LCFRS, MCFG). The
key notion connecting these formalisms to LMG is a switch from surface order
generating functions to relations, or from a functional rule to something that looks
much like a definite clause; in other words, a Prolog rule. The production-style LMG
fragment (2) is then transformed to (7), and this is what LMGs will look like in this
thesis—but this is merely a matter of presentation.2

S�� � �dat nmv� :- NP�n�� VP�m� v��
VP�nm� vw� :- VR�v�� NP�n�� VP�m�w��
VP�n� v� :- VT�v�� NP�n��

(7)

This definite clause notation abstracted a bit further away from the idea of movement,
an abstraction the literature on MCFG/LCFRS had already made, to placement of
one or more clusters the yield of a deep-structural constituent can be divided into. For
example, a Dutch verb phrase can, in a very simple setting, be thought of as divided
into a noun cluster (NC) and a verb cluster (VC). In the literature, one finds both
analyses which consider the VC to be the core phrase, from which the objects have
been extraposed to the left, and analyses which do the opposite: extrapose the verbs to
the right. A sensible conclusion seems to be that neither of these should be given the

2The old production-style notation version of LMG will not be discussed in this thesis, but is not entirely
uninteresting. Details of literal movement grammars with slash and colon items, and the definition of a
property (left-bindingness) that allows for efficient left-to-right scanning parsers, can be found in my first
conference paper [Gro95b]. An advantage of productions over the Prolog-clause style is that large parts of
a grammar are as easy to read as a CFG. This can help translate, e.g., GB accounts of linguistic phenomena
into a literal movement paradigm (but I have chosen not to do so in chapter 9).
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honour of calling itself a ‘constituent’, but at best they are surface clusters of the one
phrase that are equal-right citizens.

� � � dat Frank �NC Julia koffie � �VC zag drinken �(8)

The relational view seemed to be responsible for an amount of extra strength w.r.t.
known tuple-based formalisms such as MCFG; this was the ability to describe SHAR-
ING at string level: an LMG can describe the intersection between two context-free
languages, simply by a clause like (9)—to be read as “x is recognized as an A if it is
both a B and a C” (chapter 3).

A�x� :- B�x��C�x��(9)

This ability was the issue of a discussion with DAVID WEIR in Sussex, who believed
that the ability to describe intersections was an unfavourable property for a grammar
formalism—it leads to undecidability of problems such as emptiness of the generated
language, and it means that the resulting class cannot entirely satisfy the desirable
properties of an ABSTRACT FAMILY OF LANGUAGES. More important for me at that time
however was that Weir did not find my arguments for the tractability of recognition
convincing.

As I consequently started to put myself under more pressure to find the proof that a
large class of LMG could be recognized in polynomial time, it turned out that the wheel
I seemed to have more or less re-invented did have a number of favourable properties.
In a period when BILL ROUNDS (Michigan) was visiting CWI, I found that what a
restriction of LMG, called SIMPLE LMG, added to the existing formalisms exactly
made it the ultimately ‘undressed’, or grammar-like, representation of Rounds’ logical
system iLFP, that describes precisely the languages recognizable in deterministic
polynomial time (chapter 5).

The next step was to prove that there was something in the space between the
existing formalisms and PTIME that was worthwhile from a linguistic perspective, and
such evidence I found in a well-known paper by ALEXIS MANASTER-RAMER [MR87].
At that same time, MARCUS KRACHT and JENS MICHAELIS (Potsdam, Berlin) were
investigating counter-examples to the SEMILINEARITY (thought plausible) of Natural
Language. I met Marcus at the ESSLLI summer school in August 1995, and later at
the // workshop at CWI, where Marcus invited me for a short visit to Berlin. When I
saw Marcus and Jens in February 1996, they helped me broaden my views as well as
to properly work out the details of a number of arguments in favour of LMG vs other
MILDLY CONTEXT-SENSITIVE grammar formalisms (chapter 8 and [MK96]).

I then started implementing a prototype of a parser based on simple LMG, and
while writing some example grammars, I became more convinced of the ‘hints’ A–C,
but got stuck, as among others Marcus Kracht had warned me for, on the rule-based
approach to grammar writing.

Having worked out these subjects until a point where it seemed that I wasn’t able
to squeeze out much more, I started worrying that this would be all, and then it seemed
to have little original content. Jan van Eijck however convinced me that I would find
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the opposite if I simply started writing the book with what was available at this point.
This was a good recipe, because thinking of my work in terms of a book helped making
natural openings to new story-lines visible. Looking back at the resulting part III of
this thesis, I wish I had started ‘thinking in terms of the book’ even earlier—not least
because having such a concrete project at hand, Jan and I started having more regular,
more in-depth, encouraging and rewarding discussions.

At the August 1996 ESSLLI summer school in Prague I went to a class on depen-
dency grammar by HAJIČOVÁ, PETKEVIČ and SGALL, and had another conversation
with Marcus Kracht. This, together with the excellent atmosphere of the summer
school I already knew from the year before in Barcelona, set the stage for an open-
minded study of the principles and parameters approach to language description, and
gave clues as to how I might set up a principled account of language that formalized
intuitions put in the back of my mind, such as the mentioned A–C, by tractability
studies and the design of LMG.

Two further ‘hints’, or perhaps ‘desiderata’, played a rôle in developing such a
principled framework. Work on simple LMG descriptions, which had polynomial-
time recognition, invigorated a belief that linguistic structure should be tractable;
another belief that needed to be given formal support was the idea that through literal
movement, one could localize a suitably chosen set of basic morphological/selectional
dependencies (excluding co-ordination phenomena, but including the relative clause).

E The structure of written language is computationally tractable.

F All relevant syntactic dependencies can be localized.

In parallel to this development I was working out ideas on FERNANDO PEREIRA’s
extraposition grammar, whose graph-shaped structural representations helped getting
a grip on the seemingly circular dependencies introduced by wh-relative clauses. A
similar phenomenon occurred when I proved that if modified head grammar is used
to describe Dutch sentences with relative or wh-pronouns, it either has long-distance
dependencies (which I wanted to localize), or it must attach the clause via the relative
or interrogative pronoun directly to the verb that the pronoun is the complement of,
and not, as is traditionally assumed, attach it at S or CP level. The conclusion seemed
to be that the heaviest dependency involved in an object-relative clause such as (the
man) that I saw is the relation verb (saw)–object (that), so this, if anything, is the “arc”
that connects the main clause and the relative clause.

This provided a further motivation for putting forward the principled framework of
chapter 10. This framework, loosely based on POLLARD’s HG and hence called FREE

HEAD GRAMMAR, takes morphological and selectional DEPENDENCY to be the core of
grammatical description, inspired by the literature on Dependency Grammar I recently
read, by hint F, and by the methods of “manually” analyzing Latin and Greek I learned
at high school.

Sentences of Latin clearly showed an underlying tree structure that is highly similar
to that of English and Dutch, but obviously, the sentence could not be read from the
trees by walking through the leaves from left to right. This was of course already not
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the case for the LMG descriptions of Dutch, so it was clear to me that this failure of a
language to have a meaningful constituent structure was not a privilege of languages
like Latin that are called NON-CONFIGURATIONAL in the literature.

Summarizing as before, I now had the following two additional hints:

G Every sentence should have a tree-structured representation, but sometimes a
phrase must be allowed to be dominated by a subconstituent.

H It is fruitful to drop the assumption that there should be a tree structure at
whose leaves the sentence can be read from left to right.

It was a challenging goal to try to use a cluster analysis, in the form of FHG, to
describe some phrases from Latin poetry, as examples of extremely free word order.
This blissfully turned out to work rather well. The fact that there are five pages on the
syntactic analysis of Latin in this thesis seems to stress either, or both, the profetic or
educational skills of my parents, who are classical language teachers at the high school
I went to; when I started studying Mathematics in 1989 they said that one day I would
not be able to resist the temptation to apply whatever knowledge I would gather, to
language; moreover, my father always claimed that the ‘type of intelligence’ needed
to appreciate classical languages was no different than that of someone with a good
insight in the sciences.

The emphasis on constituent structure relativized in hint H had always struck me as
being inspired by properties of English rather than of language in general, and a clean
look at dependency in a framework where languages with a more free word order, such
as Latin, are not expelled, made it interesting to investigate the effect of dropping the
constituency principle for a while. It would at least give some more insight to a worry
that has run through my research as an important motive.

J It seems that the major grammatical theories are de facto very much tuned to
the description of English. Such a development must be avoided.

A proper introduction of a world of principles and parameters required a note on
Government-Binding theory. Thus chapter 9 popped up naturally when I sat down to
write chapter 10 that had been available on scribbler paper for a long time; this is the
largest deviation from the ‘chronological perspective’ of this book; it may give the
false suggestion that I now have a preference for the perspective sketched in chapter
10; I also see clear benefits in an approach that remains closer to GB theory, which
was one of the theories that were subject to concern J.

Amsterdam, September 1997
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Chapter 1
Phrase structure and dependency

PHRASE STRUCTURE and DEPENDENCY are the two most essential notions underlying
the analysis of linguistic structure. Traditionally, phrase structure, abbreviated as PS,
refers to a division of a sentence into PHRASES or CONSTITUENTS that can be represented
in a LABELLED BRACKETING of the sentence, as in (1.1).

�S �NP Frank� �AUX will�
�VP �V poor� �NP Julia� �NP �Det a� �N cup� �PP �P of� �NP �N tea�������

(1.1)

CONTEXT-FREE GRAMMAR (CFG) is a mathematical formalism that describes exactly
these labelled bracketings of sentences. Important aspects of CFG are introduced in
section 1.1.

The choice which words are to be grouped into constituents, and the naming (S, NP,
VP) of the constituents is directly influenced, if not defined, by the notion dependency
between words and phrases, which is introduced in section 1.2.

Traditional grammatical frameworks such as Government-Bindingtheory assume a
tight interaction between dependency, phrase structure, and word order. This exercises
a strong influence on the design of formalisms for grammatical description. At the
core of the research reported in this thesis is a tendency to take a small step back with
respect to a number of such traditional assumptions.

The meaning of the terms constituent, phrase structure, dependency and so forth
differs considerably in various frameworks; most notably when theories built up on
phrase structure (GB, chapter 9, HPSG [PS94]) are compared with theories that
take dependency as the central notion (dependency grammar [Mel88], word grammar
[Hud90]). Section 1.3 develops generalized definitions of phrase structure and depen-
dency that enable one to look at these concepts from a distance, and compare their use
in different grammatical frameworks without running into terminological clashes.

Finally, section 1.4 gives an overview of parts I, II and III of this thesis, briefly
outlining what will covered, and what new results are to be expected.

13
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1.1 Context-free grammar

Although the reader should probably be acquainted with context-free grammar to be
able to understand this book, I will define it here for the usual purpose of fixing notation
and introducing a first example of a simple grammar, but also because the extensions
to CFG I will give in chapters 2 and 3 depend on three different ways of looking at
grammatical derivation.

1-1 deÆnition. A CONTEXT-FREE GRAMMAR (CFG) is a tuple �N� T� S�P� where N
and T are disjoint finite sets of NONTERMINAL SYMBOLS and TERMINAL SYMBOLS,
S � N is the START SYMBOL, and P is a finite set of PRODUCTIONS of the form

A � X1X2 � � �Xm

where m � 0, A � N and Xi � �N � T�.

*

Some form of context-free grammars is often used at the core of linguistic theories; they
are especially suitable for providing a ‘rough structural characterization’ of languages
with an elementary word order, in which compound phrases such as drank coffee
generally appear unaltered, and uninterrupted, in the complete sentence.

1-2 example: CFG for English. A large amount of structure underlying English
syntax can be characterized using a context-free grammar. The following is a very
simple example; G � �N� T�Csub�P�, where

N � fCsub�V0�VI�VT�VR�N0�Cg�
T � f swim� drank� drink� saw� see� hear�

help� Frank� Julia� Fred� coffee� that g

and the set of productions P is given in figure 1.1.

The nonterminal symbols have the following intuitive meanings: a VI is an IN-
TRANSITIVE VERB, a VT is a TRANSITIVE VERB, a VR a RAISING VERB,1 an N0 is a NOUN

PHRASE, a V0 is a complete sentence, and a Csub is a subordinate clause.

The rules can be read, informally, as follows: a sentence is made by concatenating
a noun phrase and an intransitive verb (production [2]); swim is an intransitive verb
(production [5]), but, an intransitive verb can also be made by concatenating a transitive
verb and a noun phrase (production [3]). So drank coffee, just like swim, is an
“intransitive verb”.

1-3 remark. A more traditional naming of categories is CP for Csub, S or IP for V0,
NP for N0, VP and V for VI. Multi-word verb phrases and a single intransitive verbs
(sometimes called VI or IV) are not distinguished in this thesis, and similar for a

1Called raising because of some semantic and surface-order phenomena expressed in Government-
Binding theory through forms of movement that will be discussed later (chapter 9).
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verbal complex taking one object and a transitive verb, &c. It is customary to present
grammars as in figure 1.1 by just listing the productions P; the start symbol is the one
on the left hand side of the first rule in the grammar.

*

The way the grammar was interpreted in example 1-2 is informal; the traditional formal
interpretation of a context-free grammar is to read its productions as REWRITE RULES

that license the nonterminal symbol on the left hand side of the arrow to be replaced
with the sequence on the right hand side of the arrow. It is customary to use the word
SEMANTICS for a formal interpretation of a syntactical construction; and a grammar is
itself a syntactical construction. This is not to be confused with the use of the word
semantics as the interpretation or meaning of sentences in a natural language.

1-4 notation. I will use A�B�C � � � to denote arbitrary nonterminal symbols,a� b� c for
arbitrary terminal symbols, X� Y� Z for symbols that are either nonterminal or terminal.
The variables u� v�w will stand for strings, that is elements of T�; finally, �� � � � � will
stand for arbitrary SEQUENCES of symbols, i.e. elements of �N � T��. I will use � for

�1� Csub � C V0

�2� V0 � N0 VI

�3� VI � VT N0

�4� VI � VR V0

�5� VI � swim

�6� VT � drank
�7� VT � drink

�8� VR � saw
�9� VR � see
�10� VR � hear
�11� VR � help

�12� N0 � Frank
�13� N0 � Julia
�14� N0 � Fred
�15� N0 � coffee

�16� C � that

Figure 1.1: Simple CFG for English.
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the empty string or sequence. Concrete nonterminals in example grammars will be in
roman, sometimes with a superscript. Concrete terminal symbols will be rendered in
a typewriter font. For any string or sequence �, j�j will be the number of symbols in,
or the length of �. When R is a production A � �, then A is called the LEFT HAND

SIDE (LHS) of R, and � is its RIGHT HAND SIDE (RHS).

1-5 remark. In a context-free grammar for a natural language, the elements of T are
usually the words of the language. The strings w � T� are sentences (either correct
or incorrect), and sometimes called TERMINAL WORDS. In the literature, it is also
customary to call a string a SENTENCE only if it is recognized by the grammar.

I will avoid using this terminology. In a mathematical context, I will talk about
TERMINAL symbols and STRINGS only. When talking about language, I will use WORD

and SENTENCE in their ordinary informal meanings.

1-6 deÆnition: rewriting semantics for CFG. Let G � �N� T� S�P� be a context
free grammar. Then the productions can be read as defining a relation�: the smallest
relation such that, for all �� �� � � �N � T��� A � N:

�A� � ��� if P contains A � �

Then define
�
� to be the reflexive, transitive closure of �, that is

1. �
�
� � for any sequence � � �N � T��

2. If �� � and �
�
� � then �

�
� �

The grammar G is now said to RECOGNIZE a string w � T� if and only if S
�
� w.

1-7 deÆnition: language, CFL. Let T be an alphabet (a set). A LANGUAGE OVER

T is a set L � T� of strings over T. The LANGUAGE GENERATED BY a CFG G is the
language L � L�G� such that w � L if and only if G recognizes w. A language is
called CONTEXT-FREE (a CFL) if it is recognized by a CFG.

*

The rewriting semantics is a rather ambiguous notion of analysis, because symbols can
be rewritten in several different orders, even when this order does not seem to have
any significance: (1.2) and (1.3) are different derivations, according the grammar of
figure 1.1, of the same sentence.

V0 � N0 VI

� Julia VI

� Julia VT N0

� Julia drank N0

� Julia drank coffee

(1.2)
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V0 � N0 VI

� N0 VT N0

� N0 VT coffee
� N0 drank coffee
� Julia drank coffee

(1.3)

Moreover, the derivations are linear, glossing over the possibility to view CFGs as
assigning a TREE STRUCTURE to sentences (figure 1.2), or equivalently, writing them
in LABELLED-BRACKET FORM (1.4).

�V0 �N0 Julia� �VI �VT drank� �N0 coffee���(1.4)

In this tree analysis, the two rewriting sequences (1.2) and (1.3) correspond to the same
tree-shaped derivation. The formal notion of a tree analysis is the following alternative
semantics for CFG, which is equivalent to the rewriting semantics (proposition 1-10).

coffeeJulia drank

N0 VI

N0VT

V0

Figure 1.2: Tree analysis of Julia drank coffee.

1-8 deÆnition: derivational semantics for CFG. Let G � �N� T� S� P� be a
CFG. Then define the relation � between nonterminal symbols and terminal strings as
follows, by induction on what is called the DEPTH of the derivation.

Base case Let R � P be a production in P whose RHS contains no nonterminal
symbols:

A � w

Then R is called a TERMINAL PRODUCTION and

A �1 w�
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Inductive step If the RHS of a rule R contains at least one nonterminal symbol:

A � w0B1w1B2w2 � � �wm�1Bmwm

where m � 1, wi � T� and Bi � N, R is called a NONTERMINAL PRODUCTION

and if, for every 1 	 k 	 m,

Bk �
nk vk

and n � maxk�nk� is the highest value of the nk,

A �n�1 w0v1w1v2w2 � � �wm�1vmwm�

Finally, we write A � w if A �n w for any n.

*

The sentence Julia drank coffee is a rather trivial one—the grammar from example 1-2

coffeeFrank saw Julia drink

VR

N0 VI

N0

V0

N0 VI

VT

that

C

Csub

V0

Figure 1.3: Example of verb phrase embedding.

is capable of generating arbitrarily long sentences by repeating the chain of productions
V0 � N0 VI � N0 VR V0. The simplest such sentence is shown in figure 1.3. But in
principle any number of V0s can be embedded, producing a sentence of the form (1.5).

Frank saw Julia hear Frank see � � �
� � � Julia hear Frank see Julia drink coffee�

(1.5)
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It is important to stress that a simple grammar as example 1-2 describes the underlying
structure of English only; it does not look at morphology and thus approves of syntac-
tically incorrect sentences like Frank see coffee saw Julia. Grammars are sometimes
further refined by assigning different nonterminal symbols to finite and infinitive verbs
and verb phrases. However, it then neglects the structural similarity between the finite
and non-finite cases: rule [2] for example would then appear in three nearly identical
forms: one for finite verbs, one for infinitives, and one for gerundives—and this is
still a highly simplified example, that disregards things like person, number and case.
Another refinement is to split N0 into a category of ANIMATE NOUNS that can appear as
the subject of verbs like drink and INANIMATE NOUNS like coffee that can’t. For now,
I will say that these properties are not structural in nature, so they should preferably
not be considered when looking at the relation between underlying structure and word
order; I will get back to this issue in chapter 7.

A third formal interpretation of context-free grammars is in terms of LEAST FIXED

POINTS; it is again equivalent to the rewriting interpretation, but gives information
about all the nonterminal symbols simultaneously, and gives a link to the treatment of
COMPUTATIONAL COMPLEXITY I will give in chapters 4 and 5.

1-9 deÆnition: Æxed point semantics for CFG. Let G � �N� T� S�P� be a CFG.
Let NA be the set of ASSIGNMENTS to the nonterminals: functions � mapping a
nonterminal to a set of strings over T. The set of productions P can then be viewed as
an operator ��G�� taking an assignment as an argument and producing a new assignment,
defined as follows:

���G�����A� � f w0v1w1v2w2� � �wm�1vmwm j

k� 1 	 k 	 m : vk � ��Bk��
A � w0B1w1B2w2 � � �wm�1Bmwm � P g

(1.6)

Now define an order �NA�v� by (1.7).

�1 v �2 � 
A � N� �1�A� � �2�A�(1.7)

Then �NA�v� is a COMPLETE PARTIAL ORDER (cpo), because it has a bottom element:
the empty assignment �0 given by (1.8), and contains all least upper bounds

F
X to

directed sets X � NA given by (1.9).

�0�A� � � for all A � N(1.8) �G
X
�
�A� �

�
��X

���A��(1.9)

It is easily seen that ��G�� is a continuous and monotonic operator on �NA�v�; this
means that f ��G��k�0 j k � 0 g is a directed set and one can take the least upper bound
of this set, the LEAST FIXED POINT of ��G��, to be the interpretation of the grammar:

IG �

�G
k�0

��G��k�0
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This interpretation IG is a function which takes a nonterminal and yields a set of
strings; the language recognized by the grammar in the sense of definition 1-7 is then
IG�S�.

*

Before proving formally that the three interpretations of CFG are equivalent, let’s
look at how the fixed-point interpretation works on the example grammar. The initial
assignment �0 assigns the empty set to each of the nonterminals; applying ��G�� to �0

yields �1 � ��G���0 where

�1�V
0� � �

�1�V
I� � f swim g

�1�V
T� � f drank� drink g

�1�V
R� � f saw� see� hear� help g

�1�N
0� � f Frank� Julia� Fred� coffee g

(1.10)

Applying ��G�� again yields �2 � ��G���1 where

�2�V
0� � f Frank swim� Julia swim� � � � g

�2�V
I� � f swim� drank coffee� drank Frank� � � � g

(1.11)

The assignments to VT, VR and N0 don’t change, because derivations for these nonter-
minals apply no more than a single production. A third phase yields the first complete
sentences:

�3�V
0� � f Frank swim� Julia swim�

Frank drank coffee�
Frank drank Frank� � � � g

�3�V
I� � f swim� drank coffee�drank Frank�

saw Julia swim� � � � g

(1.12)

A fourth phase generates more complex sentences, and so forth.

�4�V
0� � f Frank swim� Julia swim�

Frank drank coffee� Frank drank Frank�
Frank saw Julia swim� � � � g

(1.13)

So the fixed point interpretation sums up, per nonterminal, the derivations of depth 1,
those of depth 2, of depth 3, &c.

In the context-free case, it is nearly trivial to prove that the three semantics are
mutually equivalent; but recall that these three versions were given separately because
in more complex grammar formalisms, one type of semantics is easier to define, and
hence easier to use for proofs of a formalism’s properties, than the other. Because the
simple case of CFG serves as an example for these more complex proofs, I will go
into relatively much detail here.
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1-10 proposition. Thefixed point, rewriting and derivational interpretations of CFG
are equivalent.

Proof.

(i) If A �n w then A
�
� w.

Suppose A �n w. If n � 1, then there is a production

A � w

So it follows immediately that A
�
� w. If n � 1, then A �n�1 w, means that

there is a production

A � w0B1w1B2w2 � � �wm�1Bmwm

and for each 1 	 k 	 m there is a nk 	 n such that

Bk �
nk vk�

and w � v1 � � � vm; now by induction, Bk
�
� vk. It is easily seen that

�
� is closed

under composition and substitution; so

A
�
� B1 � � �Bm
�
� v1B2 � � �Bm
�
� v1v2B3 � � �Bm
...
�
� v1 � � � vm�1Bm
�
� v1 � � � � � � vm

i.e.

A
�
� w�

(ii) if S
�
� w then S � w.

To prove this, write �
n
� � if �

nz �� �
� � � � ��, and prove the following stronger

result by induction on n: if �
n
� w and

� � w0B1w1B2w2 � � �wm�1Bmwm�

then for each 1 	 k 	 m, there is a p such that Bk �p vk, and

w � w0v1w1v2w2 � � �wm�1vmwm�

(iii) w � ���G��k�0��A� if and only if A �k w.

This follows immediately by careful examination of the definitions. �
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1.2 Dependency

Before I proceed to developing the meta-theoretical framework and list of points of
departure of the next sections, I briefly look at how context-free grammars interact
with the linguistic notion of DEPENDENCY in their application to languages such as
German and Dutch whose surface structure seems to be slightly more complex than
that of English.

A verb and its complements (to take a representative example) are said to be in a
relation of IMMEDIATE DEPENDENCY, because the verb assigns accusative case to its
object, may assign infinitive or gerundive morphology to its verbal complement, &c.
Typically, one says that the object and subject depend on the verb, but not vice versa.
For now, I will ignore this sense of direction in the notion of dependency.2

Sentence (1.14) shows the major dependencies in a sentence described by the
grammar for English in the previous section.

...that Frank saw Julia help Fred swim(1.14)

It is not a coincidence that one can, with a bit of fantasy, recognize a ‘tree’ in the
dependency arcs drawn above the sentence in (1.14), and that the arcs correspond
to lines in the derivations according to the context-free grammar of figure 1.1 (this
derivation is shown on page 33).

This correspondence between dependency arcs and branches of a context-free
derivation is a way of interrelating context-free grammars for different languages,
or in more general terms, for relating the underlying structure of languages without
looking at their word order.

1-11 example: German, long surface distance, dependency domain.
In subordinate clauses in GERMAN and DUTCH, all the objects in the verb phrase
typically precede all the verbs. Sentence (1.15) is the German equivalent of the
English sentence (1.14).

..., daß Frank Julia Fred schwimmen helfen sah(1.15)

In German, as in English, there can in principle be any number of dependent verb-
object pairs of type (sah, Julia). But in contrast to the English case, the dependencies

2Disregarding the directionality of immediate dependency does not make sense when looking at the
transitivized notion of dependency, because every pair of two phrases or words in a sentence is usually
connected through a chain of immediate dependency arcs. However, in those parts of this thesis where I am
interested in a BOUNDED DEPENDENCY DOMAIN, the transitivization is limited and it is legitimate to look at
undirectional non-immediate dependency.
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in German can stretch over an arbitrarily large number of words. I will then say that
the language has LONG DISTANCE DEPENDENCIES with respect to the SURFACE (WORD)
ORDER.

Because the verb-object pairs are embedded, the German equivalent can be gener-
ated by a context-free grammar just like the English one by reversing the order of the
VI productions; see figure 1.4.

�1� Csub � C V0

�2� V0 � N0 VI

�3� VI � N0 VT

�4� VI � V0 VR

�5� VI � schwimmen

�6� VT � trank
�7� VT � trinken

�8� VR � sah
�9� VR � sehen
�10� VR � hören
�11� VR � helfen

�12� N0 � Frank
�13� N0 � Julia
�14� N0 � Fred
�15� N0 � Kaffee

�16� C � daß

Figure 1.4: CFG for simple German subordinate clauses.

The German grammar correctly keeps dependent words ‘close to each other’ in
its derivation trees; that is there are no structural long-distance dependencies. This
is formally characterized in the following definition: the German CFG analysis has a
BOUNDED DEPENDENCY DOMAIN.

1-12 deÆnition. A syntactic description of a fragment of natural language (for ex-
ample a context-free grammar) is said to have a BOUNDED DEPENDENCY DOMAIN if
it assigns some graph-shaped structural analysis to a sentence, and there is a (typi-
cally small) number d, such that for any sentence, immediately dependent words are
connected in the structural representation by a chain of no more than d edges.
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*

For simple fragments of English and German, I have now showed that context-
free grammars can properly capture EMBEDDING such as the VR construction, CON-
STITUENCY or PHRASE STRUCTURE, and the right DEPENDENCY relations. Nonetheless it
has been argued many times that CFG are inadequate for giving a complete description
of any particular natural language.

All such arguments in the literature employ one of the following two typical ways of
proving the non-context-freeness of natural language: a WEAK GENERATIVE CAPACITY

(wgc) argument aims at showing that there is no context-free grammar that generates
precisely the correct sentences of a given language (say English), without looking at
how the grammar analyzes the constructions of the language. A STRONG GENERATIVE

CAPACITY (sgc) argument assumes an amount of knowledge about the structure of the
language, and shows that there is no grammar whose structural analyses respect that
knowledge. With wgc reasoning non-context-freeness can be decided for a smaller
class of languages, but in a way often thought more convincing, because an sgc
argument assumes theoretical knowledge that one has to believe in order to find the
argument convincing.

It is perhaps confusing that a weak generative capacity argument has a stronger
content than a strong generative capacity argument. The terminology wgc and sgc has
the following definition as a clarifying historical background.

1-13 deÆnition: weak/strong equivalence. Two grammars are WEAKLY EQUIV-
ALENT if they generate the same languages in the sense of definition 1-7. They are
STRONGLY EQUIVALENT if in addition to that, they assign equivalent structural analyses.

*

When context-free grammars are under investigation, both types of argument usually
lean on the well-known PUMPING LEMMA, that will be generalized later (3-10, 3-11,
8-8).

1-14 theorem: pumping lemma for CFG. Let L be a context-free language. Then
there is a constant c0 such that for any w � L with jwj 	 c0, there are strings u0� u1� u2

and v1� v2 such that v1 and v2 are not longer than c0, at least one of v1 and v2 is is not
empty, w � u0v1u1v2u2 and for any p � 0, u0v p

1 u1v p
2 u2 � L.

Proof. The full proof is in [HU79]. Let L be recognized by a context-free grammar
G. Grammar G can be transformed into a CHOMSKY NORMAL FORM grammar G� �
�N� T� S�P� that has no EMPTY PRODUCTIONS (productions whose right hand side is �)
except possibly S � �, and no productions with more than 2 symbols on their RHS.
Take c0 � 2jNj to be two to the power of the number of nonterminals in G�. Then
if a sentence w is in L and longer than c0, at least one branch in its G�-derivation in
must be longer than the number of nonterminals, so one nonterminal A must appear
on this branch more than once. So, using the rewriting semantics, w can be derived as
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follows:

S
�
� u0 A u2
�
� u0 v1 A v2 u2
�
� u0 v1 u1 v2 u2

� w

(1.16)

Now observe that the recursive chain

A
�
� v1 A v2(1.17)

in this rewriting sequence can be eliminated (p � 0), or iterated (p 	 1). �

DUTCH is used abundantly in arguments that natural language is beyond the capacity
of context-free grammars, both weakly and strongly. Some weak generative capacity
arguments however also work in German, such as the following argument done for
Dutch in [MR87].

1-15 deÆnition: regular languages. Let some alphabet T be given, and let a � T.
Then


 the SINGLETON a briefly denotes the language containing just the string a;


 let L1 and L2 be languages over T, then the CONCATENATION L1L2 is the language
containing all concatenations w1w2 of any w1 � L1 and w2 � L2;


 the UNION L1 � L2 denotes the language which contains all strings that are
either in L1 or in L2;


 the ITERATION L� denotes the language f wn j n � 0� w � L g (where wn stands
for n repetitions of the string w).

A language that can be defined using the operations singleton, concatenation, union
and iteration is called a REGULAR LANGUAGE. An example is the languagea��b�c��d
that contains sentences such as aaaabcbbccbddd.

It is customary to write L� to abbreviate LL� � f wn j n � 1� w � L g. The
regular languages form a proper subclass of the context-free languages.

1-16 lemma: intersection. The class of context-free languages is closed under
intersection with regular languages, that is: if a context-free language is intersected
with a regular language, the result is again a context-free language [HU79].

1-17 proposition: linguistic limits of CFG, wgc and German [MR87].
There is no context-free grammar that generates the set of syntactically correct German
sentences.
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Proof. While the dependency structure of simple German subordinate clauses can be
described by a context-free grammar,binary conjunctions as in (1.18) are a construction
that cannot be generated by a CFG.

� � � � daß
that

Frank Julia Fred schwimmen
swim

helfen
help

ließ
let-3SG

und
and

ertrinken
drown

lassen
let-INF

sah
saw

(1.18)

This is proved as follows. Intersecting German with the regular language

R � � � �, daß Frank Julia N� schwimmen V� ließ
und ertrinken V� sah

where
N � f Fred� Dieter� Ute� Beate g
V � f beibringen� sehen� hören� helfen� lassen g

(1.19)

yields the set

L � f � � �, daß Frank Julia Nk schwimmen Vk ließ
und ertrinken Vk sah j k � 0 g

(1.20)

Now suppose German is context-free. Then so is L, by lemma 1-16. So the pumping
lemma 1-14 applies. Look at the sentence in L that has k � c0; then the pumping
lemma says that new sentences in L can be produced from it by pumping two substrings
shorter than c0; it is easy to see that this is impossible; at least 3 substrings will need
to be pumped. This is a contradiction, so German is not context-free. �

The English verb phrase structure does not seem to allow for a similar construction,
because the second clause cannot leave out the objects, but replaces them with him/her.

� � � that Frank let Julia help Fred swim and saw her let him drown(1.21)

The structure of Dutch is even ‘harder’ for context-free grammars. In 1976, HUY-
BRECHTS [Huy76] published an argument against the weak context-freeness of Dutch
using a technique similar to the above for German, projecting3 a simple, co-ordination
free crossed dependency sentence onto the 2-copy language f ww j w � fa�bg� g,
which is known not to be context-free (use the pumping lemma). This argument
was cumbersome, because the dependencies in Dutch are practically invisible in
the morphological realization, so effectively, one would end up with something like
f ww j w � a� g, which is context-free.

Later arguments either use conjunctions as in 1-17,or are based on strong generative
capacity (see e.g. Huybrechts refinement [Huy84], or the following proposition).

1-18 proposition: linguistic limits of CFG; sgc and Dutch.
There is no context-free grammar that describes the set of syntactically correct Dutch
sentences and whose derivation trees have a bounded dependency domain.

3Through intersection with a regular language and a homomorphism.
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Proof. The Dutch equivalent of raising verb sentence shows a form of CROSSED

DEPENDENCY: in

...dat Frank Julia Fred zag helpen zwemmen(1.22)

Frank is linked to zag, and all further objects in the sentence appear between Frank
and zag. Since there can be any number of objects, Dutch has inherently long distance
dependencies w.r.t. the surface order. But the Dutch verb phrase doesn’t have the
embedding structure of the German sentences; the pumping lemma can be used to show
that in this case there is no context-free grammar that reflects the proper dependencies
in its derivational analysis, i.e., that the grammar cannot have a bounded dependency
domain.

Suppose there is a CFG for Dutch. Then this grammar has a pumping lemma4

constant c0. Let s be a sentence longer than c0 from the following fragment:

R � � � �dat Frank Nk Julia zag Vk zwemmen
where

N � f Fred� Pieter� Ada� Bea g
V � f leren� zien� horen� helpen� laten g

(1.23)

then the grammar will recognize correct Dutch sentences obtained from s by pumping
two substrings. The fragment is constructed in such a way that correct Dutch sen-
tences obtained by pumping from a sentence in the fragment must again belong to the
fragment.5 Indeed, the two pumped strings must be of the form N p and V p.

The construction of the pumping lemma shows us that these strings are generated
in an embedding structure; the overall derivation looks like

S
�
� dat Frank u0 A u3
�
� dat Frank u0 N p A V p u3
�
� dat Frank u0 N p u1 Julia zag u2 V p u3

(1.24)

So every repetition of the recursive chain A
�
� N pAV p will increase the distance

4Since the grammar is not necessarily in CNF, this constant will be slightly different than that of lemma
1-14.

5 Manaster-Ramer points out that in Dutch, the number of objects is in some cases allowed to be smaller
than the number of verbs. For details see [MR87], p. 230ff.
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between the dependent words Frank and zag in the derivation tree (1.25).

A...dat Frank

A

S

Julia zag

(1.25)

It can now be concluded that there is no context-free analysis of Dutch that has a
bounded dependency domain. �

Chapter 8 includes a discussion of other arguments against the weak and strong ade-
quacy of various grammatical formalisms, including CFG. This thesis I will investigate
straightforward extensions of context-free grammar in which some (chapter 3), or all
(chapter 10) long-distance dependencies structurally inherent to CFG can be localized.
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1.3 Some meta-theory

Computational linguists have always attached great value to drawing tree-shaped anal-
yses from which the derived sentence can be read at the bottom going straight from
left to right. This is partially due to the rôle context-free grammar has played as a
fundamental basis for grammatical description since the early days of generative lin-
guistics. On the other hand, this tendency has been able to survive because linguistic
research has always had a considerable focus on English, which has a relatively high
correlation between surface order and dependency.

The hardness of the Dutch cross-serial construction (1.22) is often characterized in
works on DEPENDENCY GRAMMAR as the property of being NON-PROJECTIVE according
to the definitions made in this section.

1-19 deÆnitions: dependency, phrase structure, node. I coarsely divide syn-
tactic theories into DEPENDENCY BASED METHODS and PHRASE STRUCTURE BASED

METHODS. A dependency based theory takes words as the basic entities, whereas
a phrase structure based theory recognizes phrases, that combine words or smaller
phrases, as additional entities. Some phrase structure based theories also assume the
existence of “empty” entities which play certain functional, non-structural, rôles.

For every known grammatical theory, the basic entities will appear in some form
as the vertices of a graph- or tree-shaped structure. Abstracting away from the type of
theory, I will use the word NODE to refer to a basic entity.

*

Dependency-based frameworks typically arise when so-called non-configurational
languages are to be described, that is, languages with a very weak interaction between
dependency and word order—think of Latin. At the other end, phrase structure based
methods perform best on languages where dependency and word order are very tightly
related, hence especially on English. Dutch and German are somewhere in the middle
of this spectrum, and they often require “untypical” use of the syntactical constructions
offered in either type of grammatical frameworks.

1-20 deÆnitions: head, dependent, hierarchy. When two nodes are in an im-
mediate dependency relation to each other, one is often designated the HEAD and the
other the DEPENDENT or COMPLEMENT. A complement is strictly required by the head,
whereas dependent refers to the more optional case, including, e.g. adjectives, adverbs,
prepositional phases, &c.

I will call a theory STRICTLY HIERARCHICAL if in the analysis of a single full
sentence, each node has at most one head, and there is only one node, the TOP NODE,
that has no head.

A theory is STRICTLY SELECTIONAL if every dependent is a complement.

*

Context-free grammar qualifies as a strictly hierarchical, phrase structure based syntac-
tical theory. The dependency pictures drawn in the previous section were not strictly
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hierarchical, because they contained cycles.

The directionality of immediate dependency from definition 1-20 is often motivated
by the fact that one word SELECTS for a word of another type, and not vice versa. If
a transitive verb kissed is in a dependency relation with its object Julia, then the noun
is there because the verb SELECTS for a noun phrase, that is, the verb can appear in a
correct sentence only when combined with an object. Therefore, the verb is said to be
the head in the dependency relation, and the object is the complement. When there is a
more optional selection, e.g. between a noun and an adjective, one often allows oneself
to speak of the adjective as a more general case of dependent of the head noun, but
which is not a complement. Another model of the noun–adjective case is the strictly
selectional approach of calling the adjective a head and the noun a complement—in
this case, the noun will often have more than one head, and the resulting theory cannot
be strictly hierarchical.6

There has been some interest in the literature [Hud90] [Nic78] for looking seriously
at the option of allowing a word or phrase to be governed by more than one head. The
dependency pictures from the previous section can be viewed as an example of multi-
headedness. Another example is the following relative clause in Latin taken from
OVID, Metamorphoses (Pyramus & Thisbe):

...altera  quas  Oriens habuit praelata puellis 
the other     that     the East    had      preferred     girls

‘‘...the other the preferred one among the girls known in the East’’
(Ov. Met. IV 56.)

F−NOM−SG  F−ACC−PL                                      F−NOM−SG    F−ABL−PL

(1.26)

The relative pronoun quas receives its accusative case from the verb habuit, and its
feminine plural from puellis.7

The following, directional version of the dependency pictures is free of cycles
and multi-headedness. Sentence (1.27) shows a generally accepted subset, including
directions, of the dependencies in the English subordinate clause (I leave out the
relations to the word that in all examples). The arcs drawn below the sentence in the
previous section are considered secondary, and can in fact all be thought of as the
composition of two other arcs (the object of a raising verb is the subject of its infinitive
verb complement). By a convention due to HUDSON [Hud], a vertical arrow points at
the top node.

(...that) Frank saw Julia help Fred swim(1.27)

6In chapter 10, a stage is reached where all dependents are complements.
7An alternative view, taken in section 10.4, is that the relative pronoun is an adjunct, and adjuncts are

heads, so quas is the head of puellis.
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The German (1.28) and Dutch (1.29) cases can be assigned identical dependency
relations; the Dutch dependencies however are “tangled”,8 which makes it impossible
to draw a tree analysis such as I did for English and German in the previous section.
This is formalized in definition 1-21.

(...daß) Frank Julia Fred schwimmen helfen sah(1.28)

(...dat) Frank Julia Fred zag helpen zwemmen(1.29)

1-21 deÆnition: projectivity (Hays, Lecerf) [Mel88][Hay64]. Given a selection
of dependency relations, a sentence is called PROJECTIVE if, when drawing all arcs link-
ing dependent words as arrows from head to dependent, above the sentence,

1. no arc is crossing another arc

2. no arc is covering the top node

If one draws, as above, a vertical arrow pointing at the top node, condition 1 implies
condition 2, because an arc covers the top node if and only if it crosses the vertical
arrow pointing at the top node. Vice versa, if condition 2 is satisfied, a vertical arrow
to the top node can be drawn that doesn’t cross any arc.

A fragment of natural language (i.e., a language according to definition 1-7) is
projective if all its member sentences are projective.

*

The majority of dependency-based theories assumes some form of the projectivity
property, which takes away a great deal of the benefit of a pure dependency approach:
easy description of non-projective phenomena such as free word order or crossed
dependencies. One of the points of the work in this thesis is that projectivity with
respect to the surface order is slightly beside the essence of the intuition one wants
to capture. Still, one of the aims of this work is to bring the dependency and phrase
structure views together; but since I will use the ‘literal movement’ paradigm to model
phenomena like crossed dependencies, projectivity is not precisely the notion that will
make this link.

For now, let’s stay with the unproblematic case: the grammar for English. The
dependency arcs readily suggest a tree representation in which the sentence can be read
at the bottom of the tree going left to right. Dependency structure (1.27) is a tree (figure
1.5a), and easily transformed to a derivation tree of a context-free grammar (figure

8The term tangled is due to HUDSON, [Hud].
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1.5b). By convention, phrase–head arcs like V0–VR and V0–VI in a tree representation
will be drawn vertically. Chains of phrase-head relations are called PROJECTIONS.

Frank

saw

Julia swim

Fred

help

Frank saw Julia swimFredhelp

a. b.

N0

V0

V0

V0N0

N0

VR

VR

VI

Figure 1.5: From dependency structures to constituent trees (1)

Frank

saw

Julia

swimFred

help

Frank saw Julia swimFredhelp

a. b.

N0

V0

VI

N0

N0

VR

VR VI

VI

Figure 1.6: From dependency structures to constituent trees (2)

Note that by no means one should take the dependencies as drawn in (1.27) for
granted. For example, one might be happier with a direct dependency between a
raising verb like saw and help and its object, because arguably it is saw that assigns
accusative case to its object Julia, and not the infinitive verb help to its subject. Such
a view on dependencies is highlighted in (1.30). In this case however, verbs have
different numbers of complements depending on their morphology—the finite verb
saw would select for a subject, but the infinite verbs would not.

(...that) Frank saw Julia help Fred swim(1.30)
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Figure 1.6 is a free translation of these alternative dependencies (a.) to a context-free
derivation tree (b.); in the constituent paradigm one is free to put in an extra verbal level
VI between the V0 and the finite VR so that each type of verbal constituent has a unique
number of complements. The grammar from section 1.1 captures this generalization;
its dependencies are derived from (1.27), but another verbal level is added between the
two complements of a VR; see figure 1.7. Arguments in favour of dependency based
theories tend to consider the high number of nodes, and the relatively high number of
arcs separating heads from their complements as a disadvantage. On the other hand,
a structure as in figure 1.7 has the advantage that properties such as case marking and
word order constraints can be easily generalized.

Frank saw Julia swimFredhelp

N0

V0

VI

VR

N0

V0

VI

VR

N0

V0

VI

Figure 1.7: Tree according to the context-free grammar on page 15.

As noted before, the dependency structures for German and Dutch are identical to
the English ones. By just changing the left-to-right ordering of the branches of the
tree representations, a constituent analysis can be drawn for the German sentence; if
the dependencies are taken from (1.27) and extended with the same extra level as in
the English example, the resulting analysis is as given by the context-free grammar in
figure 1.4.

Such a development is clearly impossible for the Dutch sentence; the same tangling
arcs as in (1.29) will appear in the tentative context-free derivation. So given a set
of dependencies, one can draw a constituent analysis if and only if the sentence is
projective.

*

In phrase-structure based theories, trees serve two, sometimes conflicting purposes;
they capture dependency as well as phrase structure or constituency. Dependency
is a relatively straightforward notion, but phrase structure and constituency are a bit
ambiguous. PROJECTIVE GRAMMAR FORMALISMS assume that a phrase or constituent,
i.e. a logical group of words, is a continuous substring of the sentence; but other
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formalisms may refer to a ‘phrase’ or ‘constituent’ as a group of words that can be
interleaved with words from other phrases. Therefore I will avoid these terms, and
rather distinguish three different notions of CLUSTERS.

1-22 deÆnitions.
A SURFACE CLUSTER is a word or logical word group that appears unfragmented in
the complete sentence; surface clusters can often be combined to form larger surface
clusters.

A SURFACE STRUCTURE is a tree from which the sentence can be read by listing the
words at its leaves from left to right. In the literature this is often, but not always,
called phrase structure or constituent structure.

A DEPENDENCY CLUSTER is the word group obtained by starting with one node (the
HEAD of the dependency cluster), and repeatedly following the immediate dependency
arrows departing from each node.

A DEPENDENCY STRUCTURE is the minimal tree containing all the arcs connecting the
words in a dependency cluster.

A DEEP CLUSTER is a word or logical word group that coincides with a theory’s notion
of a phrase or constituent. A deep cluster does not necessarily appear unfragmented
in the complete sentence, and is not necessarily representable as a (single) string of
words. When fragmented, this is sometimes called a discontinuous constituent in the
literature. Like surface clusters, deep clusters are built of smaller deep clusters.

A DEEP STRUCTURE is the tree obtained by repetitively splitting up a deep cluster into
smaller deep clusters.

*

In most theories, some of these notions will coincide. A phrase structure based theory
will often identify deep structure with surface structure (the c-structure in LFG).
Because every language will have long-distance dependencies w.r.t. any assigned
surface structure, these notions can not co-incide with that of a dependency structure.
TREE ADJOINING GRAMMAR (TAG) is an example of a theory that recognizes surface
and deep structures that are clearly distinct. Theories in the GOVERNMENT-BINDING

family will not just have a deep structure and a surface structure, but will have longer
series of tree structures, one derived from the other. GB theory is discussed in chapter
9.

In the theories developed in this thesis, except in chapter 9 on GB theory, deep
structure is related to dependency structure in varying degrees of tightness, and sur-
face structure does not play a rôle. Instead, I focus on defining operations, applied
recursively at each node of the deep structure, that spell out a sentence.

I will now introduce some terminology to classify the different formalisms in terms
of what types of analyses they make.
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1-23 deÆnitions: projective formalism. A PROJECTIVE GRAMMAR FORMALISM

is a formalism assigning to each sentence a surface structure (possibly among other
structures).

A projective grammar formalism can be viewed as a formalism whose grammatical
descriptions have, in some sense or other, a context-free grammar at their basis. This
is often called the CONTEXT-FREE BACKBONE of a grammar.

*

Non-projective phenomena such as the crossed dependencies in Dutch and Swiss
German make that a language cannot be described trivially by projective formalisms,
that is not without carrying information over unboundedly long chains of arcs in the
deep structure or surface structure.

The analysis of the Dutch cross-serial phrase in the LFG formalism [BKPZ82],
shown in figure 1.8, illustrates how information needs to be carried over arbitrarily
long distances in the constituent structure.

Rel

dat Frank Julia helpenzagFred zwemmen

NP VP

V’

V

S

NP VP

VNP V’

V’V

Figure 1.8: LFG analysis of the Dutch cross-serial phrase

A formalism based on phrases with a non-continuous representation is MODIFIED

HEAD GRAMMAR (MHG), discussed in chapter 3. In MHG, a deep cluster is as much
as possible also a dependency cluster, and is represented as a string with a “hole”,
typically left or right of its head, and in addition to the normal way of combining
it with one or more other phrases (concatenation), there is an additional operation,
WRAPPING.

An example is the deep phrase easy to please. It can appear unfragmented (1.31)
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or fragmented (1.32), so it is not a surface cluster.

Kim is easy � to please�(1.31)

Kim is an easy person to please�(1.32)

So easy � to please can be thought of as having a hole between easy and to please, and
one can say that in the second sentence, it is WRAPPED around the noun person.

Wrapping is also capable of solving the crossed-dependency problem in a straight-
forward manner.9 Think of the Dutch verb phrase as having a hole between the OBJECT

CLUSTER and the VERB CLUSTER it typically consists of.

Zag jij Fred � zwemmen?
Did you see Fred swim?

(1.33)

Of Julia Fred zag zwemmen?
Whether Julia saw Fred swim?

(1.34)

1-24 deÆnitions. The following terminology will be used informally: a language
that can be felicitously described using a projective formalism is a CONFIGURATIONAL

LANGUAGE.

A grammar formalism that is non-projective, but phrase structure based and pre-
serving a bounded dependency domain is called MILDLY PROJECTIVE. A language that
can be described by a mildly projective grammar is called MILDLY CONFIGURATIONAL.

A language that is neither configurational nor mildly configurational is called
NON-CONFIGURATIONAL.10

*

It would be tempting to call English configurational, Dutch mildly configurational,
and Latin non-configurational.

Chapters 3 and 10 of this thesis will be devoted to the development of mildly
projective phrase-structure based analyses.

9In an isolated fragment containing subordinate clauses only. See chapter 3 and section 8.2 for a full
discussion.

10The notion of non-configurationality is used primarily in Government-Binding contexts to pigeon-
hole languages that have failed descriptive attempts through the transformational analyses known from the
GB/EST frameworks.
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1.4 Overview of the thesis

Now that some formal material and some meta-theoretical notions have been intro-
duced, I can feasibly discuss the three different perspectives on the points of departure
A-J listed in the Prologue that are offered in parts I, II and III of this thesis, and briefly
summarize which constructions and results in this thesis are summaries of previously
published research and which are new.

I. Formal Structure

In recent years there has been considerable interest in ‘light’ grammar formalisms
aimed at describing linguistic structure only, whose descriptive capacity is minimally
larger than that of a context free grammar, but which give simple and well-motivated
descriptions of non-projective word order phenomena (hints B and C). A well known
example is TREE ADJOINING GRAMMAR (TAG, see e.g. [Wei88]); less common are
LINEAR INDEXED GRAMMAR (LIG), HEAD GRAMMAR (HG, [Pol84]) and COMBINATORY

CATEGORIAL GRAMMAR (CCG). HG, LIG, CCG and TAG form a mutually equivalent
group [VSW94] in a hierarchy of languages described by a TUPLE-BASED formalism
called LINEAR CONTEXT-FREE REWRITING SYSTEMS (LCFRS or MCFG, [Wei88]);
this class is further extended with PARALLEL MULTIPLE CONTEXT-FREE GRAMMARS

(PMCFG) in [KNSK92].

An older formalism with similar purposes, but so far not compared in the literature
to the other formalisms I mentioned is EXTRAPOSITION GRAMMAR (XG, [Per81]).
XG can be thought of as formalizing the cyclic dependencies that may arise when
describing a relative clause, whereas tuple-based formalisms such as HG and MHG,
are aimed at eliminating long distance dependency altogether.

Chapter 2 opens part I by introducing XG. New in this chapter are descriptions
of Dutch, which shed light on more complex forms of extraposition than covered in
[Per81]. In order to extend the coverage of these descriptions, a modification is made
to the interpretation of XG grammars.

Chapter 3 starts with an extensive overview of tuple-based formalisms from the
literature, which are an illustration of hint H, putting together results from various
sources, and adding an occasional detail that is not covered in the literature, such
as the difficulty of describing full Dutch sentences in MHG, and whether PMCFG
describes a set of Dutch and German data that MANASTER-RAMER showed to be
beyond the capacity of tree adjoining grammar (developing further the line started in
proposition 1-17). Then, the various tuple grammar formalisms are developed into
a new general form called LITERAL MOVEMENT GRAMMAR (LMG) that will play a
central rôle in this thesis. A well-behaved subclass of this generic formalism is called
SIMPLE LMG, and essentially extends MCFG with the ability to share parts of the
input string between different branches in a derivation. Tuple grammars have the
property that they can describe languages with very different surface orders based on
identical tree structures (hint A).
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II. Computational Tractability

An important property of simple grammatical formalisms (with, in a linguistic context,
CFG as the extreme example) is that they allow efficient implementation of recognition
and parsing procedures (hint E). Part II of this thesis looks at everything related to
computer implementation, in theory and in practice.

In Computer Science, it is customary to express the theoretical performance of
algorithms in terms of their COMPUTATIONAL COMPLEXITY: a function expressing how
the time and space requirements of the algorithm depend on the size n of the input
parameters of the algorithm. Given an abstract problem, it is often possible to make
predictions about the minimum and maximum complexity of any possible algorithm
that solves it. One is usually more interested in these statements about the complexity
of a problem rather than the complexity of a particular algorithm. A well known
example of a complexity statement is

Fixed recognition for context-free languages can be performed
in O�n3� time and O�n2� space

(1.35)

where the symbol O is a notation indicating the order of magnitude by which the
execution time and required space of recognition algorithms grow in terms of the size
of input sentence and the size of the grammar.

Statements like (1.35) are explained in more detail in chapter 4, which also gives
various ways for getting to similar results for classes of stronger formalisms like HG,
MCFG, LMG and XG: two models of computation are introduced, RANDOM AC-
CESS MACHINES and ALTERNATING TURING MACHINES, and ROUNDS’ logical language
iLFP. New in chapter 4 are the definition of INDEX LMG and PREDICATE DESCENT

ALGORITHMS, which formally capture the well-known complexity heuristics based
on counting the number of positions in the analyzed sentence that play a rôle when
checking a grammar rule. Index LMG can be thought of as a ‘minimal form’ of iLFP
formulae, and the relationship between these two is investigated briefly.

Chapter 5 redevelops a proof cycle carried out in [Rou88] and [CKS81] to demon-
strate that simple LMG describe precisely the languages that can be recognized in time
polynomial in the size of the input. It also includes discussions of how to obtain polyno-
mial time bounds for recognition of arbitrary grammars in the simple LMG spectrum,
briefly looks at the problem of UNIVERSAL RECOGNITION that has been argued to be
intractable, and at stronger forms that have an exponential time recognition.

Chapter 6, in which I try to obtain similar results for classes of XG, is completely
original. The standard interpretation in Pereira’s sense is first proven to be undecidable.
Restrictions on the format and interpretation of XG started in chapter 2 are developed
further, and lead to the definition of classes that have polynomial-time recognition.

The practical chapter 7 is the first of a series of significantly less formally minded
chapters. It looks at an implementation of an LMG based parser and practically feasible
methods of defining attributes such as morphology and semantic interpretation over
packed tree representations output by a parser.
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III. Principles

Part III investigates how a framework might be built that preserves the intuitions about
underlying structure from part I, and the tractability results in part II, but in a way
that respects as many motivated linguistic principles as possible. The chapters in the
third part, and in a sense also chapter 7, are of a much more tentative nature than
the previous chapters—they aim at a broad, liberal-minded investigation of various
approaches to language description without going into detailed formal presentations.

In chapter 8, the discussion of part I is picked up in a more meta-theoretical
manner. One of the motivations for the light grammar formalisms of part I is that in
order to study the nature of linguistic structure in a “theory-independent” fashion, it is
valuable to investigate precisely how much formal power is required for an adequate
structural description of natural languages. A number of examples from the literature
are listed, making up for the rather limited view of the examples on partial verb
clause conjunctions in chapter 3, notions of CONSTANT GROWTH and MILD CONTEXT-
SENSITIVITY are introduced. New are revised definitions of mild context-sensitivity and
an investigation of the formal power of MHG w.r.t. the combination of topicalization,
relative clauses and crossed dependencies, while demanding a bounded dependency
domain.

Chapters 9 and 10 are inspired by hint D. In chapter 9, I introduce the notion of a
PRINCIPLE BASED or EXPLANATORY theory; that is a grammatical theory that is aimed
primarily at explaining linguistic phenomena, as opposed to merely giving practical
descriptions. The GB framework, also called the EXTENDED STANDARD THEORY

(EST) or more generally, the PRINCIPLES AND PARAMETERS (P&P) framework, and
its successor, the MINIMALIST PROGRAM [Cho96]11 are well known for their broad
coverage of linguistic phenomena. Some theories have tried to achieve an equivalent
coverage (most notably HPSG, [PS94]), but in the field of descriptive linguistics, GB
theory remains the standard framework. New to a certain extent, in this chapter, is
only the final section proposing a modification of GB that abandons surface structure,
and makes use of the LITERAL MOVEMENT construction from chapter 3 instead.

The final chapter 10 pays attention to hints F and G: it tries to combine research
in mildly context-sensitive formalisms, head grammar, dependency grammar and so
forth; like the description of GB in terms of literal movement, it is largely program-
matic in nature, and keeps a large number of design decisions open. It includes a
study of the capacity of a syntactic basis slightly extending that of Pollard’s HG to
describe demanding surface order phenomena in Dutch and Latin, and a proposal for
an unorthodox way of looking at relative clause attachment.

*

Part III is followed by two reference diagrams (pp. 214, 215), which may help reading
this thesis with its wealth of abbreviations, and an Epilogue that connects this thesis
to CG and TAG, and gives a broad concluding discussion.

11This book, The Minimalist Program, also contains an up-to-date historical overview and an introduction
to the EST. A more basic introduction is [Hae91].
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Chapter 2
Extraposition grammar

Of the grammar formalisms defined in this thesis, EXTRAPOSITION GRAMMAR is most
close to CFG, so it is sensible to use it to open part I.

XG, first defined by FERNANDO PEREIRA in [Per81], is a grammar formalism that
augments context-free grammar with a dedicated construction modelling LEFTWARD

EXTRAPOSITION. Pereira writes that leftward extraposition is a widely used model for
describing interrogative sentences and relative clauses in most Western European lan-
guages, and these constructions are so essential, even in small real-world applications,
that one would like to be able “to express them in a clear and concise manner”.

Pereira’s paper concentrates on leftward extraposition of noun phrases, such as

The mouse � thati the cat chased �i � squeaks.(2.1)

In the first section of this chapter, I will define XG in the form from [Per81] and explain
how it can be used to describe such leftward extraposition in English. I then observe
that the long-distance dependencies in these sentences have some similarity to those of
Dutch, and it will turn out that indeed XG give a simple account of Dutch cross-serial
relative clauses. But to describe full Dutch sentences, it is convenient to make some
modifications to the semantics of XG grammars. This is done in section 2.2 and 2.3.

XG will return in chapter 6, where it turns out that the modified interpretations of
XG proposed in this chapter have favourable computational properties.

43



44 Extraposition grammar

2.1 DeÆnition and examples

The following definition gives a slightly simplified1 characterization of the original
form of XG as in [Per81].

2-1 deÆnition. An EXTRAPOSITION GRAMMAR (XG) is a tuple �N� T� S�P� where N
and T are disjoint sets of nonterminal and terminal symbols, S � N is the start symbol,
and P is a finite set of productions of the forms

1. A � X1X2 � � �Xn (a CONTEXT-FREE RULE)

2. A � � �B � X1X2 � � �Xn (an ELLIPSIS RULE)

where A�B � N and Xi � �N � T�.

*

In contrast to the case of CFG, derivational and fixed-point semantics are essentially
more difficult to define for XG, so the interpretation of XG given here is an analog of
the rewriting semantics 1-6 for CFG.

2-2 deÆnition: rewriting semantics for XG. Let �� � and � be bracketed se-
quences of nonterminal and terminal symbols, that is �� �� � � �N � T � f��	g��,
and let a rule of type 1, 2 be in P, then the following hold, respectively:

1. �A� � �X1X2 � � �Xn�

2. �A�B� � �X1X2 � � �Xn��	�

provided that the brackets in � are BALANCED. Now G recognizes a string w if there is
a bracketing w of w such that S

�
� w.

2-3 notation. I will use the notation of 1-4, with the following additions: u� v�w
are (not necessarily balanced) bracketings of terminal strings u� v and w; �� �� � are
bracketings of sequences �� �� � of nonterminal and terminal symbols.

2-4 example: English relative clauses. The grammar in figure 2.1, taken from
[Per81] and slightly modified to fit in the category naming conventions of this book,
derives simple English sentences with relative clauses like

The mouse thati the cat chased �i squeaks(2.2)

The traditional analysis of this sentence is that the object of chased has been moved, or
EXTRAPOSED, leftward. The co-indexed relative pronoun thati and the empty element

1In the XG described in [Per81], the rules of the second type are of the more general form
A1 � � � A2 � � � � � � � � � An � X1X2 � � �Xn. It is not hard to prove directly that the ‘bilinear’ version I discuss
here is weakly equivalent to Pereira’s definition; however, the result is for free here once I have proved that
the bilinear version describes all r.e. languages.
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�1� V0 � N0 VI

�2� VI � VT N0

�3� N0 � N0 Crel

�4� N0 � Ntrace

�5� Crel � Cmarker V0

�6� Cmarker � � �Ntrace � that

�7� VI � squeaks
�8� VT � chased
�9� VT � likes

�10� N0 � the cat
�11� N0 � the mouse
�12� N0 � fish

Figure 2.1: Simple grammar for English with relative clauses.

�i are called FILLER and TRACE, respectively. The relative clause that the cat chased is
derived as follows:

Crel � Cmarker V0 by rule �5�
� Cmarker N0 VI by rule �1�
� Cmarker N0 VT N0 by rule �2�
� Cmarker N0 VT Ntrace by rule �4�
� that �N0 VT	 by rule �6�
�
� that �the cat chased	

(2.3)

The derivation graph in figure 2.2 shows more intuitively how the ellipsis rules establish
a link between a relative marker and its trace.

*

A similar technique can be used to describe the crossed dependency structure of Dutch,
except that instead of a single noun phrase, a whole series, consisting of all the objects
in the verb phrase, is extraposed. The LFG analysis (figure 1.8 on page 35) mentioned
in the introduction is an example of a noun phrase extraposition model.
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chased

VT

N0

Ntrace

the cat chased

.

V0

N0

V0

N0

VI

VI

the cat

The mouse that squeaks

C rel

C marker

Figure 2.2: Derivation of an English relative clause

�1� Csub � dat NC V0

�2� V0 � Ntrace VI

�3� VI � VT Ntrace

�4� VI � VR V0

�5� NC � � �Ntrace � N0 NC
�6� NC � �

Figure 2.3: XG for Dutch subordinate clauses.



2.1. DeÆnition and examples 47

koffie

zag

...dat Frank Julia

drinken

VR

VTNC

N0 NC

N0

Ntrace

NC

Ntrace

zag drinken

.
.

V0

Csub

NC

N0

.
Ntrace VI

VI

V0

3

Figure 2.4: Derivation of a Dutch verb phrase.2

2-5 example: Dutch crossed dependencies. Figure 2.3 shows an example gram-
mar that gives a description of Dutch cross-serial subordinate clauses, as in sentence
(2.4).

� � � dat �NC Franki Juliaj koffiek � �V0 �i zag �j drinken �k ��
(� � � that Frank saw Julia drink coffee)

(2.4)

The structure this grammar assigns to the verbal clause (V0) is identical to that of the
context-free grammar for English (figure 1.1 on page 15). However, at subordinate
clause level (Csub), it generates a NOUN CLUSTER (NC) that in turn will generate the
objects whose traces appear in the actual verb clause V0. The nominal cluster splits
off a noun phrase whenever there is a trace to be eliminated to its right.

2A GB theorist may find the XG analysis unconventional, because to model the verb raising construction,
the objects in the verb phrase are raised and moved to leftward rather than raising the verbs and moving
those rightward. However, as is obvious to a more naive observer of this figure, it is the verbs zag and
drinken that are actually lifted up above the rest of the sentence.
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The verb clause derives a string similar to the context-free case, but instead of
actual noun phrases, it generates traces only:

V0 �
� Ntrace zag Ntrace drinken Ntrace(2.5)

Now, the verb clause is embedded into a Csub as follows:

Csub � � � �dat NC V0 by �1�
�
� � � �dat NC Ntrace zag Ntrace drinken Ntrace �2�5�
� � � �dat N0 NC �	 zag Ntrace drinken Ntrace by �5�
� � � �dat N0 N0 NC ��	 zag	 drinken Ntrace by �5�
� � � �dat N0 N0 N0 NC ���	 zag	 drinken	 by �5�
� � � �dat N0 N0 N0 ���	 zag	 drinken	 by �6�
�
� � � �dat Frank Julia koffie ���	 zag	 drinken	

(2.6)

The corresponding derivation graph is shown in figure 2.4. The derivation graph of
this example shows intuitively how the balancedness constraint in definition 2-2 works
in practice. A sequence is between brackets in the textual derivation, whenever it is
enclosed in a CYCLE in the derivation graph. Such cycles may be contained in each
other, but the lines of one cycle may not cross those of another cycle. So in terms of
derivation graphs, the balancedness constraint in the interpretation of an ellipsis rule
ensures that the graphs have a top-down, left-to-right ordered, planar representation.3

The balancedness constraint thus enforces that the fillers are co-indexed with
the right traces; only one such order is correct in Dutch. An attempt to swap the
dependencies between the N0s and the traces as in (2.7), linking the object of a
transitive verb to the first noun phrase in the NC, and the subject to the second, will
fail because the balancedness constraint makes that one is then at a dead end in the
derivation. The corresponding tentative derivation graph would have crossing lines
between the two object fillers N0 and their traces Ntrace.

Csub �
� NC Ntrace VT Ntrace

�
� N0 NC � Ntrace VT	
� ??

(2.7)

3Note that in this planar representation, the lines that are stippled in the figures do not count—these are
not part of the derivation graph but added for reasons of aesthetics.
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2.2 Dutch sentence order and loose balancedness

It is in the spirit of the ideas expressed in the Prologue (hint B) and chapter 1 to try
to extend the XG account of verb clauses to cover placement of the inflected verb in
Dutch, using the same leftward extraposition mechanism. Look, for example, at the
interrogative sentence (2.8).

Zag Frank Julia koffie drinken?
“Did Frank see Julia drink coffee?”

(2.8)

Here zag can be thought of as moving leftward out of the verb clause, crossing over
the noun cluster, which itself may be linked to traces right of the verb trace. This
cannot be done without violating the balancedness constraint, because the finite verb
(the chain VR—zag in figure 2.4) is enclosed in a cycle. Sentence (2.9) adds another
complication: wh-MOVEMENT (fronting of interrogative pronouns) and TOPICALIZA-
TION (fronting of arbitrary phrases) allow a noun phrase to be moved leftward over the
extraposed finite verb.

Wie zag jij koffie drinken?
“Who did you see drink coffee?”

(2.9)

�1� Csub � dat NC V0

�2� Cwh-decl � Ntopic Vtopic NC V0

�3� Cques � Vtopic NC V0

�4� V0 � Ntrace VI

�5� VI � VT Ntrace

�6� VI � VR V0

�7� V�+fin � Vtrace-�+fin

�8� Ntopic � � �Ntrace � N0

�9� Vtopic � � �Vtrace-� � V�

�10� Vtopic � � �Ntrace � Ntrace Vtopic

�11� NC � � �Vtrace-� � Vtrace-� NC
�12� NC � � �Ntrace � N0 NC
�13� NC � � �Ntrace � Ntrace NC
�14� NC � �

Figure 2.5: Successive-cyclic XG for examples (2.8) and (2.9).
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The technique used in the grammar of figure 2.5 exploits, in a naive fashion, the idea
of successive-cyclic movement known from Government-Binding theory. One speaks
of successive-cyclic movement if a phrase moves over a large distance in more than
one step; in the current example this is done by allowing the optional verb traces to
“step over” the brackets (rule schemas [10] and [11]) introduced in the derivation to
prevent the lines connecting nominal filler–trace pairs to cross. Similarly, an N-trace
can be eliminated in the NC either by generating a real noun phrase (rule [12]) or by
generating a new trace (rule [13]). At most one N-trace, and at most one verb trace
are filled at the top level (rules [1]–[3]). Any of the arguments in the verb phrase,
including the subject, is allowed to be fronted; the initial position of the subject in a
normal declarative sentence is also considered a form of topicalization.

Note that this grammar contains a number of RULE SCHEMATA that actually refer to
a set of rules. For every verb type, say T for transitive, there will be nonterminals VT+fin

and VT–fin, and when VT appears on the RHS of a rule without further specification
(rule [5]), this rule is actually a schema that contains a rule for each of VT+fin and VT-fin.

.

Wie

drinken

VR

VT

NC

NC

N0

Ntrace

NC

Ntrace

jij drinken

.

NC

N0

.
Ntrace VI

VI

Ntopic Vtopic V0

NC

.
jij

zag

koffie

.

.
zag

Ntrace

Csub

Vtrace−R

Vtrace−R

V0

VR

N0

3

Figure 2.6: XG derivation of Wie zag Frank koffie drinken?
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*

Another, perhaps better, solution to the problem of crossing threads of movement is
to modify the semantics of XG so as to allow for lines belonging to different filler–
trace pairs to cross, rather than devising complex rule systems to bend the laws of the
grammar framework.

Hence the following revised rewriting semantics for XG.

2-6 deÆnition: loose rewriting semantics for XG.
Let �� �� � � �N � T � f �A� A	 j A � P g�� be sequences of nonterminal and
terminal symbols augmented with LABELLED BRACKETS, and let a rule of type 1, 2 be
in P, then the following hold, respectively:

1. �A� � �X1X2 � � �Xn�

2. �A�B� � �X1X2 � � �Xn�B� B	�

provided that � is balanced w.r.t. each of the labelled bracket pairs �A� A	, individu-
ally. That is, �A�B A	B	 is a correct bracketing.

*

The loose interpretation has two advantages. In the current context it is valuable,
because it eliminates the need for the successive-cyclic movement that complicated
the grammar in figure 2.5. In chapter 6 it will turn out to be the key to obtaining
computationally tractable classes of extraposition grammars.

Under loose interpretation, rules [10] and [11] disappear altogether; in the corre-
sponding derivation graph, the chain VR—Vtrace-R—VR—zag is not interconnected
with the NC chain, but is allowed to cross it. The noun traces however are not allowed
to cross each other, therefore rule [13] is to remain. A full example is deferred to the
next section, where a new type of XG rule is introduced.
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2.3 An island rule

One of the virtues of the XG formalism mentioned in [Per81] is, at first glance,
lost under the loose interpretation: the capacity to elegantly describe EXTRAPOSITION

ISLANDS by introducing extra brackets.

Figure 2.7 shows how the grammar for English relative clauses of section 2.1 de-
rives sentences such as (2.10) that violate the COMPLEX-NP CONSTRAINT, that forbids a
filler from outside a relative clause to be co-indexedwith a trace inside it. These relative
clauses, enclosed in square brackets in (2.10), are called ISLANDS to extraposition.

The mouse � thati the cat � thatj �j chased �i � likes fish � squeaks�(2.10)

The derivation of (2.10) in figure 2.7 clearly violates the complex-NP constraint.
Pereira solves this by replacing the Crel production �5� by the rules �5� and �5�� shown in
figure 2.8. This makes it impossible to derive the incorrect sentence (2.10), because
the brackets introduced by Cmarker—Ntrace and Beginisland—Endisland are not balanced.
The derivation in figure 2.9 shows how the pairs Beginisland—Endisland enclose relative
clauses in cycles that cannot be crossed and hence block extraposition.

*

chased

VT

N0

Ntrace

the cat  that  chased

.

V0

N0

V0

N0

VI

VI

the cat

The mouse that squeaks

N0

V0

likes fish

VT

VI

N0N0

N0Ntrace

.
that

C rel

C marker

C rel

C marker

Figure 2.7: Derivation of a sentence violating the complex-NP constraint.
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Replace rule [5] in figure 2.1 with

�5� Crel � Beginisland Cmarker V0 Endisland

�5�� Beginisland � � �Endisland � �

Figure 2.8: Bracketing construction to enforce the complex-NP constraint.

likes

that the cat    that  likes fish  chased

.

the cat

The mouse squeaks

.
that

V0

VI
N0

N0

Beginisland

N0

N0

V0

VIN0

Ntrace
VT N0

VT N0

VI

V0
Endisland

fish

chased Ntrace

that.

Beginisland Endisland

.

C rel

C marker

C rel

C marker

3

3

Figure 2.9: Implementation of the complex NP-constraint using multiple brackets
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If brackets introduced by different filler–trace pairs are allowed to be unbalanced, as
in the loose interpretation proposed in the previous section, Pereira’s island model
will not work. Another revision of the interpretation could solve this issue—one could
introduce classes of brackets that need to be matched against each other, i.e. the
brackets introduced by Cmarker—Ntrace and Beginisland—Endisland would be required to
be properly nested, but a verbal filler–trace pair should be allowed to cross.

Instead of Pereira’s method, I propose to add a construction to loosely interpreted
XG that is dedicated to implementing island restrictions; this rule will preserve the
promised tractability results of chapter 6.

2-7 deÆnition: XG island rule. Extend XG with the following rule type:

3. A�B1�B2� � � � �Bn� � X1X2 � � �Xn (an ISLAND RULE)

with the following semantics:

�A� � ��B1�B2 � � ��Bn X1X2 � � �Xn Bn	 � � � B2	B1	�

*

An island production allows a nonterminal A to be rewritten only if it then produces a
string in which the brackets �B and 	B are balanced; all extraposition of elements of
type B1� � � � �Bn will fail because the ‘island’ is enclosed in brackets.

Such brackets are added explicitly in Pereira’s grammar (figures 2.8 and 2.9);
now they are part of the definition of the island rule. Implementing the complex-NP
constraint now amounts to changing the production for Crel, to say that all Ntrace within
a relativized sentence must be matched within that sentence (figure 2.10).

Replace rule [5] in figure 2.1 with

�5� Crel�Ntrace� � Cmarker V0

Figure 2.10: Enforcing the complex-NP constraint with an island rule.

*

As said earlier, the Dutch grammar of figure 2.5 can be reformulated in XG under loose
interpretation. The graph structures produced will be similar, but the successive-cyclic
effect is no longer necessary, and the graph will have less nodes and the grammar has
less rules. Such a grammar is shown in figure 2.11; a derivation is shown in figure
2.12. The island rule eliminates the need to allow only finite verbs to form traces, by
making the embedded verbal clause an island to verb traces.
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Conclusions to chapter 2

The essential quality of the XG approach in the framework of this thesis is that it gives
a model of extraposition without a hint of TRANSFORMATION of structures, such as in
GB theory (chapter 9). There is one clearly defined sentential structure—be it more
complex than a tree—which has elements of both deep structure and surface structure.
In fact, the structure in figure 2.4 is rather similar to the LFG analysis (figure 1.8),
except that the graph shape of the derivations makes the long-distance dependencies
explicit (and thus, in a sense, eliminates them).

To put XG in the meta-terminology of definition 1-22, an XG derivation graph is a
deep structure that can be turned into a surface structure by eliminating the filler-trace
arcs, and into a dependency structure by keeping the filler-trace arcs but removing the
other arc that connects the filler to its ‘structural parent’.

The only other appearance XG has made in the literature after Pereira’s paper is,
as far as I have been able to track down, in [Sta87] which talks about switch rules
that look remarkably much like a simple form of head wrapping (see chapter 3).
STABLER’s approach in this article is symmetric, and thus gives equivalent models for
both leftward and rightward extraposition.

This chapter used a considerable amount of material from Pereira’s original paper
[Per81] on XG. The descriptions of Dutch, the loose semantics and the island rule are
original.

�1� Csub � dat NC V0

�2� Cwh-decl � Ntopic Vtopic NC V0

�3� Cques � Vtopic NC V0

�4� V0 � Ntrace VI

�5� VI � VT Ntrace

�6� VI � VR Visland

�7� Visland�V�-trace� � V0

�8� Ntrace � Ntopic-trace

�9� V� � Vtrace-�

�10� Ntopic � � �Ntopic-trace � N0

�11� Vtopic � � �Vtrace-� � V�

�12� NC � � �Ntrace � N0 NC
�13� NC � �

Figure 2.11: Loose/island XG for examples (2.8) and (2.9).
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I will get back to XG in chapter 6 where I will prove that generic XG describe any
recursively enumerable language, but that the notion of loose interpretation defined in
this chapter yields tractable recognition. As was already shown here, the descriptive
qualities do not necessarily decrease when different threads of extraposition are allowed
to cross each other.
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3

Figure 2.12: Loose/island XG derivation of sentence (2.9).



Chapter 3
Tuple-based extensions of context-free

grammar

While extraposition grammars are a formalization of the cyclic dependencies that
arise in the description of relative clauses, TUPLE-BASED GRAMMARS aim at avoiding
structural long-distance dependency altogether, by splitting up the strings generated at
the nodes in a derivation tree into two or more SURFACE CLUSTERS that can end up at
different places in the full sentence.

In the terminology of definition 1-22, the derivation graph of a tuple grammar is
a deep structure and often also a dependency structure—this depends on how relative
clauses are modelled, and will be discussed in more detail in part III. Although surface
clusters can be recognized in the elements of the tuples of strings generated at the nodes
in a derivation, these are not part of a distinct surface structure.

The simplest tuple-based grammar formalism is MODIFIED HEAD GRAMMAR (MHG)
and has already been illustrated briefly in chapter 1 (page 35). It is a mathematically
motivated simplification of the more linguistically oriented HEAD GRAMMAR of [Pol84]
and generates the same class of languages as TREE ADJOINING GRAMMAR (TAG), LIN-
EAR INDEXED GRAMMAR (LIG) and COMBINATORY CATEGORIAL GRAMMAR (CCG).1

Whereas a context-free grammar generates strings over an alphabet T, and nonterminal
nodes combine the strings generated at daughter nodes through concatenation, MHG
generates pairs of strings hw1�w2i � T� 
 T�, and in addition to two concatenation
operations

HC head-complement�hu1� u2i � hv1� v2i� � hu1� u2v1v2i
CH complement-head�hu1� u2i � hv1� v2i� � hu1u2v1� v2i

an MHG rule can wrap one pair of strings inside the other:

HW head-wrap�hu1� u2i � hv1� v2i� � hv1u1� u2v2i

The pairs of strings are also called HEADED STRINGS, for by convention, the first
terminal symbol in the second string is the lexical head of the construction.2

1For definitions and the mutual weak equivalence of these four formalisms see [VSW94].
2It is important to distinguish two interpretations of the word head here: a phrase is divided into two

daughter phrases, one of which is the head daughter and the other the complement or dependent daughter.
A lexical head is a single terminal symbol, and is the terminal string produced by the head daughter if this
daughter node is a leaf, or to be the lexical head of the head daughter if it is nonterminal. So in the phrase
�Cthe��Hblue line with rounded endpoints� the head daughter is the phrase blue line with rounded endpoints,
and the lexical head is the noun line.

57
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�1� Csub � head-complement�C� V0�

�2� V0 � complement-head�N0� VI�

�3� VI � complement-head�N0� VT�

�4� VI � head-wrap�VR� V0�

�5� VT � h��dronki
�6� VT � h��drinkeni

�7� VR � h��zagi

�8� N0 � h��Franki
�9� N0 � h��Juliai
�10� N0 � h��koffiei

�11� C � h��dati

Figure 3.1: MHG for Dutch subordinate clauses.

The grammars for English and German from chapter 1 can be given an MHG
equivalent for Dutch that has the same underlying structure as the CFGs, except that
unlike in the XG case, its left-right branching is not identical to the English or German
case, but a rather odd mixture of complements left and right of the head. The grammar
is shown in figure 3.1, and a derivation in figure 3.2.

As in the extraposition grammars in the previous chapter, the MHG splits up the
verbal clause V0 into a noun cluster and a verb cluster; but in this grammar, these
clusters cannot be traced back in the derivation structure—rather can they be found
back as the left and right components of the tuples generated by verbal projections.
The previously fairly arbitrary choice whether to dislocate the verbs to the right, or the
nominal complements to the left, is now irrelevant because the MHG description is
symmetric in this respect.

Modified head grammars have been generalized to work with tuples of arbitrary
size; the resulting formalism, PARALLEL MULTIPLE CONTEXT-FREE GRAMMAR (PM-
CFG, [KNSK92]) is defined formally in section 3.1. Within PMCFG, several sub-
classes can be recognized, viz. MHG, LINEAR CONTEXT-FREE REWRITING SYSTEMS

(LCFRS, [Wei88]) and LINEAR MCFG. Some formal properties of these subclasses
are treated in sections 3.2, 3.3 and 3.4. I then introduce my own extension of the tuple-
based grammars, LITERAL MOVEMENT GRAMMAR (LMG), and give a classification of
all the formalisms presented in this chapter, along with some further formal properties.
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3.1 Multiple context-free grammar

To formally define MHG, it is best to look at the general case of grammars that make
use, instead of concatenation in a CFG production, of arbitrary functions manipulat-
ing TUPLES of terminal strings. Such grammars are called MULTIPLE CONTEXT-FREE

GRAMMARS, and are discussed in [SMFK91] and [KNSK92].

3-1 deÆnition. A PARALLEL3 MULTIPLE CONTEXT-FREE GRAMMAR (PMCFG) is a tu-
ple �N� T� a� S�P� where N and T are disjoint sets of nonterminal and terminal symbols;
S � N is the start symbol; a : N � ZZ� assigns an ARITY to each of the nonterminals
and P is a finite set of productions of the form

A � f�B1� � � � �Bm�

where m � 0, A�B1� � � � �Bm � N, and the YIELD FUNCTION f is a function over tuples
of terminal strings, that is, f : �T��a�B1� 
 � � � 
 �T��a�Bm� � �T��a�A� can be defined
symbolically as

f�hx1
1� � � � � x

1
a�B1�

i� � � � � hxm
1 � � � � � x

m
a�Bm�

i� � ht1� � � � � ta�A�i

where tk are strings over terminal symbols and the variables xi
j. When m � 0, the

function f is a constant, and I will simply write

A �
�
w1� � � � �wa�A�

�
�

3See 3-6 for why the general case is called parallel.
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< ,drinken>

V0
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< ,koffie>

< ,dat>C
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N0
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N0 <koffie,drinken>

<Julia koffie,drinken>

<Julia koffie,zag drinken>

<Frank Julia koffie,zag drinken>

< ,dat Frank Julia koffie zag drinken>3

3

3

3

3

3 3

VR

Figure 3.2: MHG derivation of a Dutch subordinate clause.
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3-2 classiÆcation: yield functions. Let f be a yield function defined by

f�hx1
1� � � � � x

1
a1
i� � � � � hxm

1 � � � � � x
m
am
i� � ht1� � � � � tai

1. f is NONERASING if every xi
j appears at least once in t1� � � � � ta. The class of

nonerasing yield functions is denoted by NE .

2. f is LINEAR if every xi
j appears at most once in t1� � � � � ta. The class of linear yield

functions is denoted by LIN .

3. HGY � f head-complement� complement-head� head-wrap g is the set of
HEAD GRAMMAR YIELD FUNCTIONS defined by

HC head-complement�hu1� u2i � hv1� v2i� � hu1� u2v1v2i
CH complement-head�hu1� u2i � hv1� v2i� � hu1u2v1� v2i
HW head-wrap�hu1� u2i � hv1� v2i� � hv1u1� u2v2i

Note that HGY � LIN �NE .

*

A semantics for PMCFG is best given in a fashion similar to the derivational semantics
1-8 for CFG. A fixed point semantics will be discussed for the more general case of
LMG in chapter 5.

3-3 deÆnition: derivational semantics for PMCFG. Let G � �N� T� a� S�P� be
a PMCFG. Then the nonterminals of G recognize tuples of strings, as follows:

Base case If P contains a production A �
�
v1� v2� � � � � va�A�

�
, then

A �
�
v1� v2� � � � � va�A�

�
Inductive step If P contains a production A � f�B1�B2� � � � �Bm�, for each 1 	 k 	 m,

Bk � h vk
1� v

k
2� � � � v

k
a�Bk�

i and

f�hv1
1� � � � � v

1
a�B1�

i� � � � � hvm
1 � � � � � v

m
a�Bm�

i� � hw1� � � � �wa�A�i

then

A �
�
w1� � � � �wa�A�

�
�

Now G is said to RECOGNIZE w if w � w1 � � �wa�S� and S �
�
w1� � � � �wa�S�

�
.

3-4 classiÆcation: grammar types. Let G � �N� T� a� S�P� be a PMCFG. Then

1. If F is a class of yield functions, then G is an F-PMCFG if all yield functions
in P are included in F .
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2. An HGY-PMCFG is called a MODIFIED HEAD GRAMMAR (MHG).

3. A LIN -PMCFG is called a LINEAR (P)MCFG.

4. A �LIN �NE�-PMCFG is called a LINEAR CONTEXT-FREE REWRITING SYSTEM

(LCFRS).

5. G is an n-PMCFG if for all A � N, a�A� 	 n.

*

Non-erasingness is defined because it is psychologically-descriptively relevant, but the
following proposition shows that it does not influence weak generative capacity.

3-5 proposition. For every (linear) n-PMCFL there is a weakly equivalent (linear)
nonerasing n-PMCFL.

Proof. [SMFK91] Repeat the following step until the grammar is non-erasing: if a
yield function discards a component of its k-th argument Bk, translate the productions
for Bk to productions for a nonterminal B�k that does not have this component. �

3-6 remark: naming in the literature. Presumably for historical reasons, linear
MCFG are simply called mcfg in the literature [SMFK91] [KNSK92]. I will specifi-
cally add the predicate ‘linear’ to stress that linear MCFG are a special case of PMCFG
and not vice versa. The version which is also nonerasing is also called mcfg with the
information-lossless property but LCFRS is a more widespread name [Wei88]. There
are several, tightly related formulations of head grammar. In [Pol84], head grammar
refers to an elementary grammar formalism that manipulates headed strings, where
the head can be either left or right of the ‘split point’, but also to a larger, ‘extended’
framework which adds GPSG-style features and a linear precedence operator to basic
HG. The formal equivalent, modified head grammar, was introduced in [Roa87]; its
weak equivalence to Pollard’s HG formalism is also discussed in [SMFK91]. Some
features of Pollard’s extended HG are discussed in chapter 10.
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3.2 ModiÆed head grammar

The introduction to this chapter already showed an MHG generating Dutch cross-serial
subordinate clauses, which were argued in chapter 1 to be beyond the strong generative
capacity of context-free grammar. The following example shows that MHG also have
a greater weak generative capacity than CFG.

3-7 proposition. The class MHL of languages recognized by an MHG strictly
subsumes CFL.

Proof. Clearly CFL is contained in MHL. To see the strict inclusion, consider the
3-counting language fanbncn j n � 0g, which cannot be generated by a context-free
grammar; this is proved using the pumping lemma 1-14. However, the language is
recognized by the MHG in figure 3.3. �

�1� S � head-wrap�B�T�
�2� S � h�� �i
�3� T � head-wrap�S�A�
�4� A � ha�ci
�5� B � h��bi

<a,bc>

< ,b>

<a,c>

<aa,bcc>

<aa,bbcc>

T

A

B

S

S

< , >

< ,b>

<a,c>

<a,c>T

A

B

S

3

3 3

3

Figure 3.3: MHG for the 3-counting language and a derivation.

It would be desirable to give a description of Dutch in MHG along the lines of the
XG examples in the previous chapter. This can be done to a certain extent, but rather
clumsily: the grammar in figure 3.1 can be extended to generate declarative and verb
initial interrogative clauses by dividing the nonterminals for VI and V0 into three
types each: subordinate, declarative and interrogative. Clearly, a more structural, less
feature-driven approach would be preferable.

It is formally proven in chapter 8 that when wh-questions and topicalization are
added, a fragment is obtained that can be described by an MHG only when either (i)
turning the derivations entirely up-side-down or (ii) accepting an unbounded depen-
dency domain.

Therefore in this chapter such examples will be given in linear MCFG. An objection
that could be raised to making this step to tuples of an arity greater than two, is that
in head grammar, and to a smaller degree in MHG, the division of constituents into
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two components has a linguistically motivated foundation—it is not psychologically
implausible that the human mind is capable of splitting an already ‘derived’ constituent
up into two pieces using the head of the constituent as a handle. Such a linguistically
flavoured motivation is harder to obtain for the general case of tuple grammars, but
one such motivation will be investigated in chapter 9.

On the other hand, the motivation for head grammars given in Pollard’s [Pol84]
does not go further than the following statement: “many discontinuity phenomena
can be described by [such] head wrapping operations”. Pollard then proceeds to
substantiate this claim.

Further in this chapter I will show that a fragment of partial verb phrase conjunctions
as used in proposition 1-17 is beyond the weak generative capacity of linear MCFG
and hence a magno fortiori beyond that of HG. A generalization of head grammars
is discussed at length in chapter 10. In the Epilogue, section E.2, I will briefly
touch on the relationship between HG and TAG in the context of describing mildly
configurational languages.
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3.3 Linear MCFG

Linear MCFG, appearing most often in its non-erasing form that is better known
as LCFRS, traditionally play a rather formal rôle in the literature on mathematical
linguistics. They are equivalent to multi-component tree adjoining grammars (MC-
TAG, [Wei88]), and form the top of a hierarchy of classes of languages described by
grammar formalisms of growing generative capacity [Wei92]. This hierarchy can be
formulated in many different ways, as increasingly complex head-wrapping grammars,
Dyck grammars or variants of CCG or tree adjoining formalisms. The classes in this
hierarchy have favourable properties—they are full abstract families of languages
(AFL, [Gin75]) and correspond to classes of string automata—but their formulation
has, as far as I can see, no concrete appeal to any linguistic intuition.

In the context of this thesis, it is more interesting to look at a differently cut
hierarchy, which (i) extends beyond LCFRL to at least PTIME and (ii) whose member
grammar classes are chosen more from a language-engineeringpoint of view than from
that of a mathematical linguist.

*

Before I proceed to some formal properties, let’s look at how linear MCFG can be
used to describe Dutch sentences.

3-8 example: Dutch sentence types. If one aims to describe Dutch using a sur-
face cluster model similar to MHG, then the following three sentential forms—verb
final in (3.1a) and two different forms of verb second4 in (3.1b) and (3.1c)—are
to be given the same structural description except for the top node of category C�,
� � sub� decl-wh� ques, and in such a way that the V0 directly under these clausal
phrases C� generate the same tuples of strings.

a. � � � dat Frank Julia koffie zag drinken
“� � � that Frank saw Julia drink coffee”

b. Frank zag Julia koffie drinken
“Frank saw Julia drink coffee”

c. Zag Frank Julia koffie drinken?
“Did Frank see Julia drink coffee?”

(3.1)

Note now that the only substring of length greater than 1 that appears unfragmented in
all of these three sentences is Julia koffie. So the minimum number of clusters needed
for V0 is 4.

Figure 3.4 shows a linear and nonerasing 4-MCFG that describes (3.1a–c), and
a derivation of (3.1b) is shown in figure 3.5. The grammar strictly refines the MHG
from the previous section, in that it still divides the verb phrase into an NC and a VC;
but it splits up both clusters further into two components. A verbal clause is now a
four-tuple hs� o� h� vi consisting of a subject s, the rest of the noun cluster o, the head

4Conventionally, a verb in sentence-initial position is also regarded as a result of the ‘verb second’
construction—this is widely accepted, but rather theory-internal, GB terminology.
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�1� Csub � f1�V
0� where f1�hs� o� h� vi� � h dat

NCz���
s o

VCz���
h v i

�2� Cdecl-wh � f2�V
0� where f2�hs� o� h� vi� � hs h o vi

�3� Cques � f3�V
0� where f3�hs� o� h� vi� � hh s o vi

�4� V0 � f4�N
0�VI� where f4�hsi� ho� h� vi� � hs� o� h� vi

�5� VI � f5�V
T�N0� where f5�hvi� hoi� � ho� v� �i

�6� VI � f6�V
R�V0� where f6�hri� hs� o� h� vi� � hs o� r� h vi

�7� N0 � hFranki j hJuliai j hkoffiei
�8� VI � h�� zwemmen� �i
�9� VT � hdrinkeni
�10� VR � hzagi

Figure 3.4: Linear MCFG for full Dutch sentences.

verb h, and the rest of the verb cluster v. An intransitive verb phrase VI is a verbal
clause without a subject, so a 3-tuple. The correspondence of the variable names to
the SVO/SOV/VSO (subject-verb-object, &c.) terminology, known from the literature
in generative linguistics, helps reading the grammar.

Note also that as in the XG examples in the previous chapter, but contrary to the
MHG example, the left-right branching has been made identical to the context-free
structure assigned to English in chapter 1. While the three yield functions of MHG

<Frank>

<zag>

V0

VI

<Julia>

<drinken>

V0

VI

VT
<koffie>

N0

N0

Cdecl

N0 <koffie,drinken, >

<Julia,koffie,drinken, >

<Julia koffie,zag,drinken>

<Frank,Julia koffie,zag,drinken>

<Frank zag Julia koffie drinken>

3

3VR

Figure 3.5: Derivation of a declarative sentence.
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have some repercussion on the relationship between surface order and branching in
the derivation tree, this relationship is entirely free in MCFG. The grammars can
be thought of as two columns—the column left of where specifies the structure, i.e.
immediate dominance, and the right column specifies the surface order. The same
structure can be used to underlie languages with totally different word orders, just by
modifying the functions in the right column; similarly, the order of the daughter nodes
in a production can be swapped in every possible way, when the functions in the right
column are modified accordingly. Hence the traditional SVO/SOV/VSO distinction
that refers to the left-right order of branching in the structure is no longer applicable
to the case of MCFG.

*

One remaining problem in the example is that a wh-question fronting an object from
the VI rather than the subject is not generated by this grammar. To do this, one must
either construct a 5-MCFG or differentiate rules driven by a ���topic feature.

Formal properties

The above example serves only as supporting a conjecture that MCFG provide, w.r.t.
MHG, additional power of linguistic value. The following results are of a more formal
nature.

Counting and copy languages are often used as an indication of the structural
capacities of a class of grammars—it is argued that there are parallels between such
simple languages and the crossed dependencies in Dutch (see ref. to [Huy84] on page
26, or [Rad91] for more advanced examples).

3-9 example: counting and copy ability.
(i) A class of grammars is said to be ABLE TO COUNT UP TO n if it contains a grammar
generating the language f ak

1a
k
2 � � �a

k
n j k � 0 g, where a1� � � � �an are n different

terminal symbols. The grammar in figure 3.6 shows how the class of linear n-MCFG
can count up to at least 2n.

�1� S � f �A�
�2� A � g�A�
�3� A � h�� � � � � � �i

where f �hx1� x2� � � � � xni� � hx1x2 � � � xni
g�hx1� x2� � � � � xni� � ha1x1a2� a3x2a4� � � � � a2n�1xna2ni

Figure 3.6: n-MCFG counting up to 2n.

(ii) An n-COPY LANGUAGE is the language f wn j w � L gwhere L is context-free. For
such L there is a context-free grammar G � �N� T� S�P�. Let a positive integer n be
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given. Construct an MCFG G� � �N� T� a� S�P�� as follows: a�A� � n for all A � N;
for each of the productions R � P, if R is a terminal rule A � w, then add to P�:

A � h

nz �� �
w�w� � � � �w i

and if R is nonterminal:

A � w0B1w1B2w2 � � �wm�1Bmwm

add the MCFG production

A � f�B1�B2� � � � �Bm�

where

f�
�
v1

1� � � � � v
1
n

�
� � � � �

�
v1

n� � � � � v
m
n

�
� � h w0v1

1w1 � � �wm�1vm
1 wm�

� � � �
w0v1

nw1 � � �wm�1vm
n wm i

Then G� recognizes the language f wn j w � L g. Note that by putting n � 1, it is now
rigorously shown that every context-free grammar has a weakly equivalent MCFG.

*

Now for the converse 3-12 of these examples, which makes use of a generalization of
the pumping lemma 1-14 for context-free grammars.5

3-10 deÆnition: k-pumpability. A language L is UNIVERSALLY k-PUMPABLE if
there are constants c0 and k such that for any w � L with jwj 	 c0, there are
strings u0� � � � � uk and v1� � � � � vk such that w � u0v1u1v2u2 � � � uk�1vkuk, for each i:
0 	 jvij � c0, at least one of the vi is not the empty string and for any p � 0,
u0v p

1 u1v p
2 u2 � � � uk�1v p

k uk � L.

3-11 theorem: pumping lemma for linear MCFL. Let L be recognized by a lin-
ear n-MCFG. Then L is universally 2n-pumpable.

Proof. Two straightforward modifications need to be made to the proof of lemma
3.2 in [SMFK91], p200, which is itself a nontrivial elaboration of the proof of the
context-free pumping lemma 1-14. The existential statement of pumpability needs to
be replaced with a universal one ([SMFK91] actually proved this universal version;
see in [Rad91], footnote 10 on page 286), and the argument about the size of the v k

needs to be refined. �

5The property defined here is called universal pumpability because in chapter 8, definition 8-8, a version
of pumpability is defined for which the number k of pumpable substrings is not fixed.
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3-12 corollaries. Let n be a positive integer. Then (i) linear n-MCFG can count
exactly up to 2n, and (ii) n is the highest number m such that linear n-MCFG can
generate fwm j w � Lg for each context-free language L.

*

To conclude this section, I will give the analogue of the partial verb clause conjunctions
in 1-17 for linear MCFG (c.q. MC-TAG), briefly mentioned but not worked out in
detail by Manaster-Ramer in [MR87]. It is done for German, because the argument
for Dutch suffers from the possibility of dropping embedded subjects of raising verbs,
which does not seem to be allowed in standard German (see the footnote in chapter 1
on page 27).

3-13 deÆnition. Let two finite terminal alphabets T1 and T2 be given. A HOMOMOR-
PHISM from T1 to T2 is a map h : T�1 � T�2 satisfying the constraints h�uv� � h�u�h�v�.
In other words, a homomorphism is the unique extension of a function of single
terminal symbols, i.e., a map h� : T1 � T�2 .

3-14 lemma: closure properties [SMFK91]. For each n, the class of (linear) n-
PMCFL is a full abstract family of languages (AFL), i.e. closed under set union,
concatenation, iteration, intersection with a regular set, arbitrary homomorphism and
inverse homomorphism.6

3-15 proposition: linguistic limits of linear MCFG, wgc/German. There is no
linear MCFG that generates the set of syntactically correct German sentences.

Proof. Extend the the proof of 1-17 to cover arbitrary numbers of conjuncts. Suppose
that the set D of syntactically correct German sentences is a linear MCFL. Let the sets
N, T, and V, the regular language R and the homomorphism h be defined by (3.2)–(3.6),

N � f Fred�Dieter�Ute�Beate g(3.2)

T � f küssen�umarmen�einladen g(3.3)

V � f hören�helfen�lassen g(3.4)

R � Hat Jürgen gesagt daß
Antje Frank N� Julia � T V� sah� �� und
alle ihr einen schönen Geburtstag wünschten?

(3.5)

h�a� �

�						

						�

�� if a � f Hat�Jürgen�gesagt�daß�
alle�ihr�einen�schönen�
Geburtstag�wünschteng�

und� if a is a comma or question mark�
verführen� if a � T�
a� otherwise

(3.6)

6The proof given in [SMFK91] seems to be convincing only for the case of linear MCFG. See page 80
at the end of this chapter for details.
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then by lemma 3-14 the fragment L, defined by (3.7), must be described by a linear
MCFL.

L � h�D � R� � f Antje Frank Nn Julia
�verführen Vn sah und�� j n � 1 g

(3.7)

In this example, one can’t simply say that for a sentence with k conjuncts, k � 1
substrings need to be pumped, because one can always repeat a single conjunct.
However, linear MCFG satisfy the pumping property of definition 3-10, which also
states that the size of the pumped substrings has a fixed upper bound c0. If the fragment
is a linear MCFL, then there is be a k such that it is k-pumpable. In sentence (3.8), the
conjuncts are longer than c0 so they cannot be pumped as a whole; so new sentences
within the fragment can indeed be created only by pumping k�1 sequences: substrings
of Utec0 and each of the verb sequences lassenc0 .

Antje Frank Utec0 Julia �verführen lassenc0 sah und�k(3.8)

So the fragment is not k-pumpable, and it follows that German cannot be described by
a linear MCFG. �
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3.4 Parallel MCFG

Generic PMCFG extends linear MCFG in providing a mechanism for REDUPLICA-
TION. As such it can give accounts for a number of phenomena that involve count-
ing. Linguistic examples of such phenomena are Chinese number names [Rad91],
respectively-constructs, and Old Georgian genitive suffix stacking [MK96]; these are
discussed in chapter 8.

3-16 proposition. Linear MCFL is strictly included in PMCFL.

Proof. The PMCFG in figure 3.7 generates the languagea2n
, which is not k-pumpable

for any k. �

�1� S � f�S� where f�hxi� � hxxi
�2� S � hai

Figure 3.7: PMCFG generating a non-pumpable language.

Because no formulation of the pumping lemma is known for PMCFG, the argument
in 3-15 that linear MCFG cannot generate German structure will fail for PMCFG.
The following example even shows, be it in a very abstract an indirect way, that there
is an PMCFG that generates the fragment L used in 3-15.

3-17 example: Partial verb clause conjunctions are a PMCFL.
The grammar in figure 3.8 describes a fragment F that is slightly more simple than the
fragment L used in 3-15.

F � f Antje Frank Uten Julia
�verführen lassenn sah und�� j n � 0 g

(3.9)

The fragment can be described so easily by a PMCFG because it allows only one
infinitive raising verb, lassen, so that the sequencelassenk can be generated once and
then be reduplicated. But because PMCFG is closed under inverse homomorphism,
we can map the simple fragment back to one with a richer selection of verbs. It
is, however, not straightforward to write a concrete grammar generating F, and the
construction of the proof that PMCFG is closed under h�1 does not seem to be of
much help (a direct proof is rarely given because laborious).

h�a� �

�

�
Ute� if a � fFred�Dieter�Beateg
lassen� if a � fhören�helfeng
a� otherwise

(3.10)

h�1�F� � f Antje Frank Nn Julia
�verführen Vn sah und�� j n � 1 g

(3.11)

� L
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3.5 Literal movement grammar

The notation of MCFG makes that these grammars are rather difficult to read. There
is an amount of redundancy in the idea that the grammar productions refer to a func-
tion, and this yield function is specified separately. LITERAL MOVEMENT GRAMMAR

circumvents this problem by moving the variables over terminal strings straight into
the production using a definite clause-style notation.

The program in (3.13) is an example of how a CFG (3.12) is typically translated
into the logic programming language Prolog.

S � NP VP
NP � Julia
VP � slept

(3.12)

s(Z) :- np(X), vp(Y), append(X, Y, Z).
np([julia]).
vp([slept]).

(3.13)

The Prolog program says, briefly, that one can infer s(Z) if Z is a list that is the
concatenation of two lists X and Y, and np(X) and vp(Y) are already known.
Furthermore, np([julia]) and vp([slept]) are facts. So from the facts,
s([julia, slept]) can be inferred. Square brackets are used to construct lists.
The predicate “append” is a Prolog built-in.

I will use a notation, illustrated in (3.14) and (3.15), for grammars that is half
way between the conventions for writing down context-free grammars and Prolog—I
don’t use the Prolog conventions for variables, and polish away the use of append by
allowing associative concatenation in predicate arguments.

S�xy� :- NP�x��VP�y��
NP�Julia��
VP�slept��

(3.14)

The LMG in (3.16) is a one-to-one equivalent of a 2-MCFG for anbncn. While it

�1� S � e�C�� e�hn� v� ci� � hAntje Frank n ci

�2� C � f�C�� f�hn� v� ci� � hn� v� v und ci
�3� C � g�V�� g�hn� vi� � hn� v sah� �i

�4� V � h�V�� h�hn� vi� � hUte n� v lasseni
�5� V � hJulia� verführeni

Figure 3.8: PMCFG for partial verb clause conjunctions.
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derives a string anbn just like the context-free grammar (3.15), a separate component
cn is generated in parallel.

A�axb� :- A�x��
A����

(3.15)

A�axb�cy� :- A�x� y��
A��� ���

(3.16)

The free definite clause style notation of LMG allows the grammar writer to do
everything allowed in a PMCFG, and considerably more.

Formal deÆnition

Literal movement grammars and PMCFG are defined in a similar fashion, but in
LMG, the yield functions are integrated into the productions and the arity function on
nonterminals becomes redundant.

3-18 deÆnition. A (generic) LITERAL MOVEMENT GRAMMAR (LMG) is a tuple G �
�N� T�V� S�P� where N� T and V are mutually disjoint sets of nonterminal symbols,
terminal symbols and VARIABLE SYMBOLS respectively, S � N, and P is a finite set of
CLAUSES

� :- 
1� 
2� � � � � 
m�

where m � 0 and each of �� 
1 � � � 
m is a PREDICATE

A�t1� � � � � tp�

where p � 1, A � N and ti � �T � V��. When m � 0, the clause is TERMINAL, and the
symbol :- is usually left out.

A predicate A�t1� � � � � tp� is SIMPLE if t1� � � � � tp are single variable symbols.

*

An LMG clause is INSTANTIATED by substituting a string w � T� for each of the
variables occurring in the clause. E.g. the rule S�xy� :- NP�x��VP�y� is instantiated
to rules over terminals only such as

S�Julia pinched Fred� :- NP�Julia��VP�pinched Fred��
S�Julia pinched Fred� :- NP�Julia pinched��VP�Fred��

3-19 deÆnition: derivational semantics. Let G � �N� T�V� S�P� be an LMG.
Then G DERIVES instantiated predicates as in the following inductive definition: let wi,
vi

j � T�;
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Base case7 If

A�w1� � � � �wp��

is an instantiation of a terminal clause, then G � A�w1� � � � �wp�.

Inductive step If, m � 1 and

A�w1� � � � �wp� :- B1�v
1
1� � � � � v

1
p1
�� � � � �Bm�vm

1 � � � � � v
m
pm
��

is an instantiation of a (non-terminal) clause in P, and for each 1 	 k 	 m, G �
Bk�vk

1� � � � � v
k
pk
�� then G � A�w1� � � � �wp��

Now G is said to RECOGNIZE w if w � w1 � � �wp and G � S�w1� � � � �wp�.

3-20 remark. This definition of LMG does not assign an arity to a nonterminal
symbol; this is to simplify the definitions, especially in section when looking at fixed
point interpretations in chapters 4 and 5. In principle, a nonterminal can appear with
different arities in the same LMG.

3-21 examples. Although it is a rather simple example (m � 1), let’s check how the
LMG in (3.16) derives aabbcc:

G � A��� �� by A��� ���
� G � A�ab� c� by A�axb� cy� :- A�x� y�� �x � y � ��
� G � A�aabb� cc� by A�axb� cy� :- A�x� y�� �x � ab� y � c�

Figures 3.9–3.11 show LMG equivalents of an MHG, a linear MCFG and a PMCFG,
respectively. The grammar in figure 3.9 is a bit easier to verify than the MHG itself,
but the existence of the much simpler example (3.16) shows that the rules allowed in
MHG make it more cumbersome than a more liberal 2-component LMG format.

�1� S�y1x1� x2y2� :- B�x1� x2��T�y1� y2�
�2� S��� ��
�3� T�y1x1� x2y2� :- S�x1� x2��A�y1� y2�
�4� A�a�c�
�5� B���b�

Figure 3.9: LMG equivalent for the MHG in figure 3.3.

7Note that a more elegant, but less elementary definition would use that fact that the inductive step
includes the base case if one puts m � 0.
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�1� Csub�dat s o h v� :- V0�s� o� h� v��
�2� Cdecl-wh�s h o v� :- V0�s� o� h� v��
�3� Cques�h s o v� :- V0�s� o� h� v��

�4� V0�s� o� h� v� :- N0�s��VI�o� h� v��
�5� VI�o� v� �� :- VT�v��N0�o��
�6� VI�s o� r� h v� :- VR�r��V0�s� o� h� v��

�7� N0�Frank��
�7�� N0�Julia��
�7��� N0�koffie��
�8� VI��� zwemmen� ���
�9� VT�drinken��
�10� VR�zag��

Figure 3.10: LMG equivalent of the linear MCFG in figure 3.4.

Formal properties and classiÆcation

From a series of formal results, it will turn out that LMG should be regarded as a
framework for the definition of more restricted formalisms, rather than as a concrete
tool for language description. The most important such result is that LMG in their
general form generate any recursively enumerable language; preparations for this the-
orem are made here, while the conclusion is drawn in chapter 5 after some complexity
theory has been introduced. A remarkable subclass of LMG is that of the SIMPLE

LMG, which is analogously defined here, and shown to describe precisely the class of
tractably recognizable languages in chapter 5.

The constructions used to prove the first two results already indicate that generic
LMG is a dramatically powerful formalism.

3-22 proposition. The class LML of languages recognized by generic LMG is
closed under arbitrary homomorphism.

Proof. Let L be an LML over T, and h be a homomorphism. Suppose L is recognized
by the LMG G � �N� T�V� S�P�, and assume w.l.o.g. that the start symbol S appears

�1� S�xx� :- S�x��
�2� S�a��

Figure 3.11: LMG equivalent for the PMCFG in figure 3.7.
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only with arity 1. Then construct LMG G� � �N�fΣ�Hg� T� h�T�� V� Σ� P��, such
that Σ�H �� N and

P� � P �
f Σ�y� :- S�x�� H�x� y�� �

H��� ��� g �
f H�a x� w y� :- H�x� y�� j a � T� w � h�a� g

(3.17)

Then G� generates h�L�. �

After seeing the Prolog construction, one may be tempted to think that the class of
languages recognized by LMGs whose predicates all occur with arity 1 is the class of
context-free grammars. On the contrary:

3-23 deÆnition. An n-LMG is an LMG in which no nonterminal symbol appears
with an arity greater than n.

3-24 proposition. 1–LML � LML.

Proof. The idea is to replace the commas in LMG clauses by terminal symbols. Let
G � �N� T�V� S�P� be an LMG, let V be finite, and order V as fx1� x2� � � � � xng. Let the
symbols ITS and c not be in N, T or V. Then let G� � �N� fITSg� T� fcg� V� S�P��
where

P� � f A�t1 c t2 c � � � c tp� :- B1�s1
1 c s1

2 c � � � c s1
p1
��

� � �
Bm�sm

1 c sm
2 c � � � c sm

pm
��

ITS�x1�� ITS�x2�� � � � � ITS�xn��
j P contains a production

A�t1� t2� � � � � tp� :- B1�s1
1� s1

2� � � � � s1
p1
��

� � �
Bm�sm

1 � sm
2 � � � � sm

pm
� g �

f ITS�a x� :- ITS�x�� j a � T g �
f ITS���� g

(3.18)

Intuitively, the symbol c stands for “comma” and ITS stands for “is a word in T�”, in
other words, for “does not contain the comma symbol”. Now G� recognizes L�G�. �

So let’s proceed to a classification of the PMCFG hierarchy, in terms of LMG. For a
full classification of the different formalisms in their predicate LMG representations,
some terminology needs to be introduced.8

8The terms bottom-up and top-down in definition 3-25 reflect the behaviour in the perspective of
derivation trees, where the root (S-) node is the top of the derivation. Although this choice of terminology
should certainly not be read as hinting at a relationship to parsing or procedural semantics, the analogy to
the top-down/bottom-up terminology is useful, because other options like ‘leftward’ and ‘rightward’ give
rise to confusion—left and right are reversed in MCFG notation.
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Formalism Increasing conditions on LMG form

Generic LMG —
Simple LMG Bottom-up nonerasing, non-combinatorial
(Nonerasing) PMCFG Top-down linear, top-down nonerasing
LCFRS Bottom-up linear
MHG Pairs only, restricted operations
CFG Singletons

Figure 3.12: Classification of tuple grammars in terms of LMG clause restrictions.

3-25 classiÆcation: clause types. Let R be an LMG clause:

A�t1� � � � � tp� :- B1�s
1
1� � � � � s

1
p1
�� � � � � Bm�s

m
1 � � � � � s

m
pm
��

then


 R � BU-LIN , or R is BOTTOM-UP LINEAR if no variable x appears more than
once in t1� � � � � tp.


 R � TD-LIN , or R is TOP-DOWN LINEAR if no variable x appears more than
once in s1

1� � � � � s
m
pm

.


 R � BU-NE , or R is BOTTOM-UP NONERASING if each variable x occurring in
one of the sj

k also occurs in at least one of the ti.


 R � TD-NE , or R is TOP-DOWN NONERASING if each variable x occurring in one
of the ti also appears in one of the sj

k.


 R � NC, or R is NON-COMBINATORIAL if each of the sj
k consists of a single

variable, i.e. all predicates on the RHS are simple.


 R is SIMPLE if it is in S � BU-NE � BU-LIN � NC.

3-26 classiÆcation: grammar types. An LMG �N� T� S�P� is an F-LMG if for
all R � P, R � F . Furthermore,F-LML will denote the class of languages recognized
by F-LMG.

A BU-LIN -LMG is called bottom-up linear, a TD-LIN -LMG is top-down linear,
BU-NE-LMG is bottom-up nonerasing, a TD-NE-LMG is top-down nonerasing and
an S-LMG is a SIMPLE LMG.

3-27 proposition. A language L is described by a PMCFG if and only if it is
described by a top-down linear, top-down nonerasing, non-combinatorial LMG.
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Proof. Suppose w.l.o.g. that each nonterminal A in a LMG appears with only one
arity a�A� (add new names for nonterminals that appear in more than one arity). Then
there is a 1–1 correspondence between LMG rules and PMCFG rules: rule (3.19) is
mapped to (3.20) and vice versa. The translation from PMCFG to LMG is trivial; the
reverse translation is valid because of non-combinatoriality, top-down linearity and
non-erasingness (otherwise f would not have been a function).

A � f�B1� � � � �Bm�

where f�
D

x1
1� � � � � x

1
p1

E
� � � � �

D
xm

1 � � � � � x
m
pm

E
� � ht1� � � � � tpi

(3.19)

A�t1� � � � � tp� :- B1�x
1
1� � � � � x

1
p1
�� � � � � Bm�x

m
1 � � � � � x

m
pm
��(3.20)

�

The classes MHG, linear MCFG, &c. can now all be classified in terms of clause
type classification 3-25. Such a classification is shown in figure 3.12.

The last clause type defined, that of simple LMG, will play an important rôle in
this thesis; simple LMG will turn out to generate precisely the languages recognizable
in polynomial time, and have some favourable linguistic properties as well.

The key property of simple LMG is that, while its power is sufficiently restricted,
it is capable of modelling sharing of strings generated in different branches of a
derivation.

3-28 proposition: intersection. Let F be a class of LMG clauses including S.
Then F-LML is closed under intersection.

Proof. Let G1 � �N1� T1�V1� S1�P1� and G2 � �N2� T2�V2� S2�P2�. Assume w.l.o.g.
that N1�N2 � � and neither contains the symbol S; moreover let S1 and S2 be used only
with arity 1. Let G be grammar G � �N1�N2�fSg� T1�T2�V1�V2� S�P1�P2�fRg�,
where R is the clause

S�x� :- S1�x�� S2�x��(3.21)

(“S�x� can be derived if one can derive both S1�x� and S2�x�.”) Then G generates
L�G1� � L�G2�. �

3-29 proposition. PMCFL is strictly contained in S-LML

Proof. (i) Let L be described by a PMCFG. Then it is also described by a nonerasing
PMCFG. Translate this grammar to an LMG G using proposition 3-27. The clauses
in G are now bottom-up and top-down nonerasing, and top-down linear.

This means that the clauses of G are not necessarily simple, because they may not
be bottom-up linear; that is, a variable x may appear on the LHS of a clause more than
once. Look at such a clause; an example is (3.22).

A�x� yy� :- B�x�� C�y��(3.22)
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Contrary to PMCFG, simple LMG allows variables to appear on the right hand side
of a clause more than once. So clause (3.22) can be replaced with the simple clause
(3.23) and the simple clause schema (3.24) to yield a weakly equivalent grammar.

A�x� yz� :- B�x�� C�y�� Eq�y� z��(3.23)

Eq�ax� ay� :- Eq�x� y�� for every a � T
Eq��� ���

(3.24)

Repeat this construction until the grammar contains no more non-simple rules. So
PMCFL is contained in S-LML.

(ii) PMCFL is closed under homomorphism (3-14) and membership for PMCFL
is decidable ([SMFK91] or chapter 5). Suppose that PMCFL = S-LML. Since S-
LML is closed under intersection, this would yield a class containing the context-free
languages that is decidable and closed under intersection and homomorphism. This is
a contradiction.9 �

3-30 example: counting and copy ability. Sharing can be used to mimick much
of the capacity of arbitrary linear MCFG and the reduplication of PMCFG to describe
simple formal languages. Let F be a class of LMG clauses including S; then 2-F-
LML is closed under taking n copies for any n, because there is the clause

S1�x1x2 � � � xn� :- S2�x1�� Eq�x1� x2��Eq�x2� x3�� � � � �Eq�xn�1� xn��(3.25)

Similarly, 2-S-LMG can generate the PMCFL a2n
. All n-counting languages are in

1-S-LML, because they are finite intersections of context-free languages.

3-31 proposition. For each k � 0, the class of k-S-LML is a pre-AFL [GGH69],
that is, closed under marked product L1aL2, marked iteration �Lc��, inverse homo-
morphism and intersection with regular sets.

Proof. All except closure under inverse homomorphism are obvious. Unlike in the
AFL case, closure under h�1 does not follow immediately from other closure results
(in the case of multiple context-free grammars, this can be taken to follow from
substitution by regular sets, cf. [Gin75], corollary on p. 76). It must be proved directly
by finitely encoding indices into the homomorphic images of leftmost and rightmost
terminals of the argument terms. This is laborious, but straightforward. �

3-32 example: simple LMG and partial verb clause conjunctions.
The grammar in figure 3.13 generates, directly, a fragment of German slightly larger
than L in proposition 3-15; larger because this grammar also generates conjunctions
in embedded verbal clauses.

9The notion of decidability and the results used here will be discussed in part II.
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Conclusions to chapter 3

While head grammars were originally introduced to serve an explanatory-linguistic
purpose, MCFG/LCFRS are not used in the literature for concrete structural de-
scriptions; rather, once a head grammar had been constructed that generated Dutch
subordinate clauses in head grammar, the job was considered done. One reason for
this lack of interest is that there is no linguistic foundation for the ‘clustering’ analysis
of surface structure except the one based on the notion of the position of the head
introduced in [Pol84]. Another important reason is that an MCFG is not a nice format
for writing grammars.

This chapter has tried to fill in this gap, first by showing that linear and parallel
MCFG can give accounts of important phenomena that cannot be treated in MHG;
then by introducing the new formalism LMG that gives further refined descriptions of
the running example of Manaster-Ramer’s partial verb clause conjunctions, and has a
more readable form. The notation has not been seen before in the literature, but others
have mentioned that they developed it independently (Ristad, p.c.).

The step from multiple context-free grammars to literal movement grammars is
straightforward, although the only similar step made in the literature is the introduction
of iLFP in [Rou88]. The iLFP formalism however, discussed at length in chapter 5,
is meant as an intermediate logical language connecting grammar formalisms, finite
arithmetic and complexity theory.

LMG can be viewed as the ultimately simplified, grammar-like representation
of iLFP, although when I introduced LMG in [Gro95b] in the obsolete form not
discussed in this thesis (but used in the Prologue, page 8), I was entirely unaware of

�1� Csub�daß o v� :- V0�o� v��

�2� V0�o� v1 und v2� :- V0�o� v1�� V0�o� v2��

�3� V0�s o� v� :- N0�s��VI�o� v��
�4� VI�o� v� :- VT�v��N0�o��
�5� VI�o� v h� :- VR�h��V0�o� v��

�7� N0�Frank�� �13� VT�küssen�� �16� VR�sah��
�8� N0�Julia�� �14� VT�umarmen�� �17� VR�hörte��
�9� N0�Ute�� �15� VT�einladen�� �18� VR�sehen��
�10� N0�Antje�� �19� VR�hören��
�11� N0�Dieter�� �20� VR�lassen��
�12� N0�Fred��

Figure 3.13: Simple LMG for partial verb clause conjunctions.
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connections to either MCFG or LFP. The current notation, which is half way between
that of MCFG and iLFP, was introduced in a series of subsequent papers in 1995 and
1996. All material in these papers, except descriptions of Dutch in [Gro95a], and the
correspondence between production notation and the current definite clause notation
(called CPG) in [Gro96] is covered in equivalent or higher depth in this book.

Most of the results presented in this chapter are covered in the literature, but
have not been summarized in a single text. New are the idea that MHG are not
sufficient to treat the Dutch crossed dependencies embedded in full sentences (which
is further worked out in chapter 8), the LMG formalism and the resulting syntactical
classification of the PMCFG hierarchy, and the remarkable observation that the partial
verb clause conjunctions, unexpectedly, turn out to be weakly generable by a PMCFG.

Remarkable, because it seems intuitively clear that the partial verb clause con-
junctions are not truly a case of reduplication; the underlying non-terminal structure
may be, but the words themselves are certainly not reduplicated to form the conjuncts.
It seems, then, that a strong generative capacity argument is needed to prove the in-
adequacy of PMCFG w.r.t. this construction. This is discussed further in chapter
8.

A note that I put here hesitatingly is that the proof in [SMFK91] that PMCFG is a
substitution-closed AFL is not very explicit, which leads me to have some doubt as to
the closure under substitution; the proof claims that closure under substitution simply
follows from the definitions. This is clearly the case for linear MCFG, but a parallel
production

A � f�a� where f�hxi� � hxxi

will produce a recursive step w � ww. The standard proof of closure under substitution
would produce fvv j v � ��w�g which is not the desired set ��w���w� � fuv j u� v �
��w�g. I have not found a way to fix this. This may be due to my own limited
imagination, but if the proof cannot be substantiated, this would break the result that
PMCFG can generate the German partial verb clause conjunctions. I have not found
the authors and other experts in the field able or willing to comment on this issue, so
it remains open, but I found it nevertheless worthwhile to include in the discussion.

The scope of the examples in this chapter is highly limited. It is often thought that
an argument based on co-ordination as the running example in this chapter does not give
much insight in the nature of more basic properties of syntax, because it has a number
of ‘mathematical’ or ‘logical’ aspects that may not be part of the primary linguistic
interface. A larger overview of phenomena and generative capacity arguments is given
in chapter 8. Chapter 5 will give a detailed treatment of the computational properties
of simple LMG and another restricted version called bounded LMG.

An interesting open question is whether there is a number n such that n-S-LML
include, for example, all MCFL, all PMCFL. It seems reasonable to assume that this
is indeed a hard question; see the last paragraph on page 118.
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Computational Tractability
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Chapter 4
Complexity and sentence indices

COMPUTATIONAL TRACTABILITY is an important motivation for several issues in the
design of the formalisms of the previous chapters, and for the principle-based formu-
lations still to come in part III.

Tractability can be divided into (i) a formal requirement of polynomial complexity
for algorithms that recognize a language or construct a structural representation of a
sentence and (ii) efficient and straightforward implementation on practical real-world
computer systems. The first three chapters of part II will go into the different aspects
of formal tractability in connection with the formalisms from part I. Chapter 7 will
look at aspects of practical implementation.

For most of this thesis, a very simple approach to complexity is sufficient, and I will
concentrate on developing good intuitions for making a “quick complexity diagnosis”
rather than going through the formal material, which is of less immediate benefit to the
every day (computational or generative) linguist. Nonetheless, to support these quick
diagnoses, an amount of mathematical labour is unavoidable.

This chapter is a basic introduction to the notions in complexity theory I will be
using; the fast reader can proceed straight to example 4-11. Readers less experienced
in complexity theory should read this chapter entirely, and may decide to skip large
parts of sections 4.4 and 5.1.

83
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4.1 DeÆnitions

I will first introduce a number of concepts that will need some form of definition
but will be used rather loosely in what is to follow. As is usual in formal theory of
computation, when talking about complexity, interaction is disregarded.

4-1 deÆnition: device. In the following, a DECISION DEVICE M is an abstract ma-
chine that can perform, at any time, the following series of actions:

1. Receive an INPUT STRING w in an INPUT LANGUAGE Lin.

2. Perform a computation that takes an integer number t, or infinitely many units
of TIME; in the latter case it is said that the device does not terminate on input
w. If the machine terminates, it has used an integer number s of units of SPACE.

3. On termination of the computation, output accept or reject.

Furthermore, the steps taken in the computation, and consequently the time and space
requirements of the computation, and the output string, are uniquely determined by
the input string.

The input language is usually taken to be T� for an INPUT ALPHABET T. The set of
input strings upon which computation terminates and outputs accept is the language
L�M� recognized by the device.

A decision device can be extended to a PROCEDURAL DEVICE when the contents
of the storage at the end of the computation are taken to represent an OUTPUT STRING

encoded in some OUTPUT ALPHABET Lout. In the case of a pure decision device, the
output language is faccept� rejectg.

*

The notion of a device is intended to capture that of a COMPUTER (a class) equipped
with a PROGRAM (an algorithm). The notion of a problem is introduced below because
in general one wants to talk about the difficulty of a task regardless of what type
of computer system is performing it. The two models further specifying the notion
of a computer I will use are BOUNDED ACTIVITY MACHINES, or TURING MACHINES,
and RANDOM ACCESS MACHINES. Turing machines are popular in the study of large
abstract classes of problems, whereas random access machines are closer to physical
computers and as such give a simple model for more precise analysis of the difficulty
of practical problems.

The first concern in the design of computer algorithms is to know whether a
problem can be solved on a certain class of devices. This is formalized in the following
definitions.

4-2 deÆnitions: algorithm, problem. Devices can be divided into CLASSES in two
typical ways.

(i) by further specifying the nature of the computation (step 2); an ALGORITHM for
machines of a class C is a specification of a device in that class.
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Finite control unit

(Infinite) storage
INPUT

OUTPUT

Figure 4.1: The architecture of a decision device.

(ii) A PROBLEM is a function f : Lin � Lout. A problem defines a class Cf of devices
such that every device in Cf terminates, and produces output f�w� on input w. Cf is
the class of devices that SOLVES f. A problem for Lout � faccept� rejectg is called a
DECISION PROBLEM and specifies a sublanguage of Lin.

4-3 deÆnition: decidability and enumerability. A problem is DECIDABLE for a
class D of devices if D � Cf is not empty. A decision problem is ENUMERABLE for a
class D if there is a device in D that terminates with output accept on input w such
that f�w� � accept, and does not terminate or outputs reject otherwise.

*

The problems I will look at in this thesis are the following.

4-4 deÆnition: recognition, parsing.

A device solving the UNIVERSAL RECOGNITION PROBLEM for a grammatical formalism
F is a decision device which given a grammar G � F and a string w, outputs yes if G
recognizes w, no otherwise.

A device solving the FIXED RECOGNITION PROBLEM for a language L is a decision
device which given a string w, outputs yes if w � L, no otherwise.

A UNIVERSAL PARSER is a device that given a grammar G and a string w, outputs all
structural analyses G assigns to w.

A FIXED PARSER for a grammar G is a device that given a string w, outputs all structural
analyses G assigns to w.
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*

If a problem is computable, the intrinsic difficulty of a problem, i.e. the maximum
possible efficiency in solving a problem, will be assessed in terms of the time and
space it takes to compute a solution. Time and space are functions of the input string.
It is customary to try to express these only in terms of the length of the input string;
furthermore, one is only interested in the rough growth behaviour of time and space
consumption. This is usually done in LANDAU’s ORDER NOTATION.

4-5 deÆnition: order notation. Let f and g be functions from nonnegative integers
to nonnegative integers. Then f is said to be O�g� if there are constants c1 and c2 such
that for every k 	 c1, f�k� 	 c2g�k�.

*

The complexity statement (1.35) repeated here as (4.1) hence says that given a context-
free language L there are a device A and constants c1� c2 such that given a string w
of sufficient length n, device A decides whether w � L in time t � c1n3 and using no
more storage than c2n2 (measured in some elementary unit, say bytes).1

Fixed recognition for context-free languages can be performed
in O�n3� time and O�n2� space

(4.1)

The statement

Fixed recognition for context-free languages has O�n3� time
complexity and O�n2� space complexity

(4.2)

adds to the previous that for any device A, there are strings w1�w2 and constants c1� c2

such that decision by A whether w1 � L takes at least c1n3 time, and decision by A
whether w2 � L requires at least c2n2 units of computer storage.

In these statements (4.1) and (4.2) one further refinement is left out, that is relevant
only in some cases: the statements do not limit the class of devices they are talking
about. Of course one is generally talking about a class of devices that has similar
characteristics to everyday computers, but the required characteristics vary upon what
one is looking for; this will be explained in the next few sections.

An important class of decision problems is PTIME or simply P that contains those
problems that can be solved in POLYNOMIAL TIME on a class of machines representative
for real-world computers (BOUNDED ACTIVITY MACHINES, defined in section 4.3). That
is, given a problem p � PTIME, there are a device A and integer numbers c� d such
that A solves p on any input string of length n in no more than cnd time.

4-6 deÆnition. Let C be a class of devices (say that of random access machines or
Turing machines, defined later).

1The constant c1 in the definition of order notation is of minor importance, and can be set to the highest
number for which g is zero; this is usually 1.
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PTIME-C is the class of problems solvable by a device in C in O�nd� time for an
integer degree d.

EXPTIME-C is the class of problems solvable by a device in C in timeO�2cn� for
some c.

LOGSPACE-C is the class of problems solvable by a device in C in O�log n�
space.

r.e. is the class of problems enumerable on a Turing machine.

*

When a problem is called (IN-)TRACTABLE, it is usually meant that it is (not) solvable
in polynomial time; but use of the term tractable often implies the wish that the degree
d of the bounding polynomial is low—under 10, say.

Polynomial time complexity and tractability are an important motivation in the
design decisions underlying the LMG formalism and the empirical study in part
III. Exponential time will enter the discussion in section 5.4 on BOUNDED LMG
and the cLFP calculus and chapter 6 on the complexity of extraposition grammar.
Nondeterminism and alternation will be defined in section 4.4.2

2The reason NPTIME is not defined here, is that I will view nondeterministic and alternating Turing
machines as separate classes of machines: NPTIME-TM = PTIME-NTM.
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4.2 Index LMG and the predicate descent algorithm

Before I introduce informal definitions of the machine types, it is good to have a closer
look at the sort of problems and solutions that are to be computed. I will now show
how one moves from clauses about strings to clauses about integer positions in strings,
then how to translate those clauses into simple procedures in imperative programming
style, which I will call PREDICATE DESCENT ALGORITHMS; with a note on formalization
of these intuitive algorithms.

The predicate descent approach is somewhat different than what is common in
Computer Science, where much emphasis is laid on going through the input string
from left to right. From a formal language theoretic point of view, there is usually
no difference between left and right, and predicate descent algorithms are thus closer
to the original formulation of the grammar than conventional parsing or recognition
algorithms, and easier to grasp. They can be more easily extended to procedures
for extensions of context-free grammar, while preserving the general results on the
complexity of context-free recognition and parsing.

Index LMG

For the purpose of designing these concrete recognition algorithms, it is useful to
introduce a form of LMG that does not have concatenation, but manipulates INDICES

in the input string.

4-7 deÆnition: index LMG. An INDEX LITERAL MOVEMENT GRAMMAR (iLMG) is
a tuple G � �N� T�V� S�P�where N and V are disjointfinite sets of nonterminal symbols
and variable symbols respectively, and T � N is a set of terminal symbols. S � N is
the start symbol, and P is a finite set of clauses

� :- 
1� 
2� � � � � 
m�

where m � 0 and each of �� 
1 � � � 
m is a simple predicate

A�x1� � � � � xp�

where p � 1, A � N and xi � V. The :- symbol is left out symbol when m � 0. The
nonterminal on the LHS of the clause (in �) must not be in T.

An ITEM is a predicate with integer arguments instead of variables:

A�i1� � � � � ip�

A clause R � P is INSTANTIATED into an item by substituting for each variable an
integer between 0 and n.

An iLMG is interpreted as follows. Let an input string w � a1 � � � an � T� be
given. Then for each 1 	 i 	 n the formula G�w � ai�i � 1� i� is true.
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For each instantiated clause

� :- 
1� 
2� � � � � 
m�

if all of G�w � 
1� G�w � 
2� � � � �G�w � 
m are true, then it can be concluded that
G�w � � is true.

The grammar G now recognizes a string w when G�w � S�0� n�.

*

In chapter 5, proposition 5-6 it will be proved that every simple LMG has a weakly
equivalent iLMG. For now, it will suffice to illustrate how a CFG can be translated to
an iLMG, taking the weak equivalence for granted.

4-8 example. The CFG of example 1-2 is equivalent to the iLMG in figure 4.2.

�1� Csub�i� k� :- C�i� j�� V0�j� k��

�2� V0�i� k� :- N0�i� j�� VI�j� k��
�3� VI�i� k� :- VT�i� j�� N0�j� k��
�4� VI�i� k� :- VR�i� j�� V0�j� k��

�5� VI�i� j� :- swim�i� j��

�6� VT�i� j� :- drank�i� j��
�7� VT�i� j� :- drink�i� j��

�8� VR�i� j� :- saw�i� j��
�9� VR�i� j� :- see�i� j��
�10� VR�i� j� :- hear�i� j��
�11� VR�i� j� :- help�i� j��

�12� N0�i� j� :- Frank�i� j��
�13� N0�i� j� :- Julia�i� j��
�14� N0�i� j� :- Fred�i� j��
�15� N0�i� j� :- coffee�i� j��

�16� C�i� j� :- that�i� j��

Figure 4.2: iLMG for the English CFG on page 15.
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Predicate descent algorithms

The iLMG representation of a grammar is a good starting point for writing a straight-
forward computer algorithm performing string recognition. The style of the MEMOING

PREDICATE-DESCENT ALGORITHMS used in this thesis is largely due to LEERMAKERS

[Lee93], but I replaced the left-to-right analysis by an undirectional approach that
captures, in a general fashion, the usual informal complexity reasoning method based
on counting the number of sentence indices that are involved in checking a clause of
the grammar.

Given an iLMG G � �N� T�V� S�P� (to stay with the case of the previous exam-
ple, let’s say corresponding to a context-free grammar in Chomsky normal form), a
recognition algorithm can be constructed as follows.

Construct so-called MEMO TABLES. These are arrays in computer memory that
contain for each possible ITEM, that is an instantiated iLMG predicate �, a cell that
can contain the values true, false or unknown. All entries in the memo table are
initialized to the value unknown.

There is a function for each nonterminal symbol, whose results, after being com-
puted, are stored in the memo table. To prove an item A�i� k� the function for nonter-
minal symbol A is called with i and k as arguments, which will try each clause for A,
and then try all instantiations of a possible additional variable j appearing on the RHS
of a clause. While a nonterminal is being checked, it is marked false in the memo
table, so that indefinite recursion is avoided—after all, if there is a cyclic derivation of
an item, then there is also an acyclic derivation.

The function for the nonterminal V0 of the English CFG is displayed in figure 4.3.
Given a string w of length n, the algorithm is invoked as Csub�0� n�. Because every
combination of a function and two integer arguments (every item) is memoized after
it is computed, each item needs to be computed only once.

Complexity analysis. In this context-free case, there are in total O�jNjn2� items,
so this is the space complexity of the algorithm. Because the grammar has at most two
nonterminals on the RHS of its rules, each function has at most one loop ranging at
most 0 to n. So each function call will consumeO�n� time. The number of calls made
is proportional to the number of items; therefore under the assumption that memoing
is an elementary step, the time complexity of the algorithm is O�jNjn3�.

The general case. From an arbitrary iLMG, a recognition algorithm can be
constructed analogously. If the arity of the predicate on the LHS of a clause R in the
iLMG is pR, and the total number of variables used in the clause is rR, then there are
npR items that trigger the clause. For each of these items, there are qR � rR � pR loops
ranging at most 0 � � � n, leading to a time complexity of O�jNjnrR�, where R is the
clause in the grammar with the highest value for rR. The total space used isO�jNjn pR�
where R is the clause with the highest arity predicate on its LHS.

In section 5.2, the values of p, q and r are calculated for a number of concrete
formalisms and grammars in the LMG hierarchy mentioned in chapter 3.
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V0�i� k�:
if memo table entry for V0�i� k� �� unknown
then

return memoed value
else

memo V0�i� k� as False

loop j � i � � � k
if N0�i� j� � True and VI�j� k� � True
then

write V0�i� k� � True into memo table
return True

return False

Figure 4.3: Predicate descent procedure for a context-free nonterminal.

Random access machines

Although the illustration of the predicate descent algorithms is of an informal nature, it
is not extremely laborious to formalize it; the bottleneck in the reasoning is the phrase
“under the assumption that memoing is an elementary step”, which is to say: a value
at an arbitrary place in computer memory can be looked up in O�1� time, that is, in a
fixed amount of time independent of how much storage is used. Provided that the total
amount of computer memory used is within a computer’s RANDOM ACCESS MEMORY,
this is indeed the case.

This is formalized in the following definition; see [HS74] for a more detailed
treatment.

4-9 deÆnition. A RANDOM ACCESS MACHINE (RAM) is a device whose computa-
tional unit has the following structure: its storage consists of an unbounded array of
REGISTERS Ri indexed with an integer i � 0, and each register contains, at any step in
the computation, any nonnegative integer.

The input language of a RAM is INI� where INI is the set of nonnegative integers.
In linguistic practice, one takes a terminal alphabet T and maps each terminal a � T to
an integer number.

On receiving its input, the RAM writes the input string into its first n registers; the
other registers are set to zero.

Each step in the computation is the performance of an INSTRUCTION. The RAM
has a PROGRAM P consisting of a finite number n of instructions, labelled I1� � � � � In;
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the machine starts at instruction I1. The following instructions are allowed:

copy 0 to Rj

add 1 to Rj

copy RRi to RRj
if-zero Ri then goto instruction j
accept
reject

In all except a successful if-zero� � �goto case, or an accept or reject instruction, after
performing the instruction, the computation will continue at the next instruction.

The output language of a RAM is faccept� rejectg. The computation ends at an
accept or reject instruction.

An M-RAM has the additional instructions

add Ri to Rj

multiply Rj by Ri

A BOUNDED (M-)RAM is a (M-)RAM with a fixed number memtop; the contents
of all registers, memory cells, and addresses during the computation are required to be
less than memtop. Arithmetic operations are performed modulo memtop.

A bounded M-random access machine is sufficiently close to everyday computers3

to provide a good basis for reasoning about the practical value of an algorithm. The
context-free recognition algorithm sketched here can be feasibly implemented on
such a bounded machine, if memtop is set to an acceptable value (a few millions).
Nevertheless, even then the algorithm will be able to recognize (not even to parse)
strings up to a length of at most a few thousand terminals on a end-20th century state-
of-the-art computer. For computer languages, algorithms exist that perform much
better than that, but their complexity analysis is more informal and often depends on
an average-case situation.

Another model of computation used frequently is a TURING MACHINE, which does
not have elementary random access; these will be discussed now.

3An everyday computer being one with a multiplication operation that takes O�1� time. Of course,
when looking at a bounded RAM model, order functions become formally ill-defined and can only be used
for informal reasoning.
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Finite program

Infinite random access array of unbounded−valued registers

INPUT

OUTPUT

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 ...

I0 I1 I2 I3 I4 I5 I6 Ilast...

Control

Figure 4.4: The architecture of a random access machine.

4.3 Deterministic bounded activity machines

Where random access machines are a formal model close to computers in the real
world, formal language theory prefers to talk about TURING MACHINES or BOUNDED

ACTIVITY MACHINES as a model of general symbolic computation. The reader who is
interested only in informal complexity reasoning may skip the discussions of Turing
machine implementations, and concentrate on the predicate descent variants.

The storage of a bounded activity machine consists of cells each containing one
of finitely many symbols; the cells are ordered and cannot be accessed immediately;
instead, the machine, like a tape recorder, has a HEAD which moves over to the cells it
wants to read from or write to. The following definition is sketchy; a formal definition
of Turing machines will be given in section 4.4.

4-10 deÆnition. A (deterministic) BOUNDED ACTIVITY MACHINE (BAM) is a decision
device with the following refinements: its storage consists of a finite number of TAPES

ti� 1 	 i 	 k of dimension di, each consisting of CELLS indexed by a di-tuple of integers.
The device has a HEAD on each tape, which is, at each step in the computation, above
one of the cells of the tape. The control unit is, at each step of the computation, in a
STATE q. The finite set of possible states Q includes special states q0, qaccept and qreject

At each step of the computation, the control unit decides, based uniquely on its
state q and the contents of the cells under its heads, to take one or more actions of the
following types:


 write a symbol to one of the tapes


 move one of the heads over 1 cell position in any direction
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Finite state control

INPUT

OUTPUT

Infinite multi−dimensional finite−cell tapes

«»«» «»«» «»«» «»«»

Figure 4.5: The architecture of a bounded activity machine.


 go to a different state

The computation begins in the INITIAL STATE q0, and ends when the machine enters
one of the states qaccept or qreject.

A TURING MACHINE is a bounded activity machine whose tapes are all of dimension
di � 1.

*

It takes a BAM time to move through its storage; however, this time is no more than
a polynomial function of the size of its input. Therefore PTIME-BAM is the same
class of problems as PTIME-RAM [HS74]. For concrete problems with an exact
polynomial time bound such as O�n6�, this is not a trivial matter.

An example illustrating the nontriviality is that EARLEY’s well known algorithm
[Ear70] for context-free recognition in O�n3� time on a RAM can be constructed on
a BAM with a two-dimensional tape, but on a standard Turing machine one has not
been able to achieve a better time complexity than O�n4�.

Henceforth I shall be interested, as most of the literature, in time complexity
on machines with any number k of 1-dimensional tapes—i.e. on regular Turing
machines. It is a known result that a Turing machine with an arbitrary number k of
tapes can be simulated on one with only 2 tapes, where the time consumption grows
logarithmically; for a polynomial-time algorithm, this means that the time will increase
only by a constant factor.

To illustrate deterministic Turing machines, I now present a sketch of a CKY
recognizer for MHG (see section 3.2). The informal predicate descent algorithm will
turn out to be constructible on a Turing machine preserving the time complexity of its
RAM equivalent; this works because in this case one can find a suitable ordering of the
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items in the storage, as is done by YOUNGER for the COCKE-KASAMI-YOUNGER (CKY)
algorithm [You67]. The algorithm works directly on a deterministic 1-dimensional,
k-tape Turing machine, where k is at least 4, and has the O�n6� time complexity that
is currently the best known upper time bound to MHG recognition.

The CKY algorithm for context-free grammars obtains an O�n3� time complexity
by looking at grammars in Chomsky normal form, and ordering the recognized “items”
(the same ones as in the predicate descent algorithm) by their length as a substring of
the input. This ordering prevents the Turing machine from excessively moving around,
which would lead to a higher time complexity than a corresponding RAM algorithm.

4-11 example: Turing recognizer for MHG. An MHG derives pairs of strings;
in a derivation of an input string w, arguments to instantiated predicates are always
substrings of w, and a predicate A�u� v� � A�l1� r1� l2� r2� consistently satisfies l1 	
r1 	 l2 	 r2.

This means that items can alternatively be represented as �t�A� f� l� r� where t is the
total length and f the length of the first component:

l � l1
r � r2

t � �r1 � l1� � �r2 � l2�
f � �r1 � l1�

(4.3)

The head grammars are assumed to have terminal rules of the form A�a� �� or A��� a�
only, i.e. ones that do not produce pairs of strings with a total length of zero. Any
MHG can be normalized to such a grammar plus a possible rule S � h�� �i.

Order the nonterminal alphabet N � fA1�A2� � � � �AjNjg. The Turing recognizer
has three tapes, on each of which the items are layed out from left to right, �t� � � ��
before �t�1� � � ��; �t�Ak� � � �� before �t�Ak�1� � � ��; �t�Ak� f� � � �� before �t�Ak� f�1� � � ��,
&c. For each item, there is a single cell containing the value 0 (not recognized) or 1
(recognized). The total amount of tape space used is proportional to the number of
items, i.e. n4; a number of additional tapes may be used for storing counters ranging
from 0 to n.

The algorithm proceeds in n PHASES; it checks the items of total length 1 first
(these are terminal productions), then those of length 2, using the results of the items
of length 1, the ones of length k using the results for the items of length shorter than k,
and so forth until length n. The head of the first tape moves only to the right in single
steps, and writes the results of combining items of shorter length read from the second
and third tape. After each phase, the newly written contents of the first tape are copied
to the second and the third tape (alternatively, one can think of the machine as having
three heads on a single tape).

In each phase, the machine runs through anO�n5� loop for each nonterminal A and
each clause for A. To describe what is done in this loop, the three types of rules must
be translated to the new representation. The wrapping rule A � head-wrap�H�C� is
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the most fun example; the corresponding TM loop is shown in figure 4.6.

A�v1u1� u2v2� :- H�u1� u2�� C�v1� v2��(4.4)

v1 u1 u2 v2A

u1 u2H

v1 v2C

l + fA AlA rAr − t + fA A A

lC rC

lH rHl + fH H

l + fC C

r − t + fH H H

r − t + fC C C

(4.5)

�tH � tC� A� fH � fC� lC� rC� :- �tH�H� fH� lH� rH�� �tC�C� fC� lC� rC��(4.6)

f Tape 1 (write) head is at �tA�A� 0� 0� 0�. g
move head 2 to tH � 1; head 3 to tC � tA � 1 [1 � n4]
while tH � tA, i.e. tC 	 0

move head 1 to fA � 0 [n � n3]
while fA 	 tA

move head 2 to fH � 0; head 3 to fC � fA [n2 � n3]
while fH 	 fA, i.e. fC � 0

move heads 1, 3 to lA � lC � 0 [n3 � n2]
head 2 to lH � n� tA � fC [n3 � n2]

while lA � lC 	 n� tA, i.e. lH 	 fC
move heads 1, 3 to rA � rC � n [n4 � n]

head 2 to rH � n� tC � fC [n4 � n]
while rA � rC � lA � tA, i.e. rC � lA � tA � tC � fC

copy boolean and of values on tapes 2 and 3 to tape 1 [n5 � 1]
move head 1 to --rA; head 2 to --rH; head 3 to --rC

move head 1 to ++lA; head 2 to ++lH; head 3 to ++lC

move head 2 to ++fH; head 3 to --fC
move head 1 to ++fA;

move head 2 to ++tH; head 3 to --tC

copy values written on tape 1 to tapes 2 and 3 [1 � �n4 � n3�]

Figure 4.6: Procedural description of actions for A � head-wrap�H�C�.

Such induction on the total length of the items can be carried out for any of the tuple-
based formalisms that are bottom-up nonerasing and top-down linear (i.e. PMCFG,
see definition 3-26). The length of a tuple of strings is then simply the sum of the
lengths of the substrings; the equivalent of the Chomsky Normal Form reduction
used in the construction for modified head grammar can be replaced with the one in
[SMFK91].
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4.4 Alternation and LFP calculi

This section shows that the auxiliary grammar system iLMG generates precisely the
languages recognizable in deterministic polynomial time, by establishing a correspon-
dence between iLMG and ROUNDS’ logical system iLFP, which itself is related to
logarithmic space-bounded ALTERNATING TURING MACHINES in [Rou88].

This construction serves to shed light on the historical background of what is done
in the next chapter for simple LMG. I will first define ATM; then iLFP, and then
sketch the link between iLMG and iLFP.

4-19 4-14

iLMG iLFP LOGSPACE-ATM
4-20 4-14

Figure 4.7: Results in this section.

Alternation

Bounded activity machines were defined only informally in the previous section. The
following definition of alternating Turing machines also serves as a formal definition
of the 1-dimensional variant of a BAM, i.e., a deterministic Turing machine. It is
a slight generalization of the definition in [CKS81]: I make no distinction between
read-write tapes and input tapes.

Informally, a NONDETERMINISTIC Turing machine is a machine that can be used
to try unboundedly many computations at the same time. An ALTERNATING Turing
machine can, in addition to nondeterministically checking whether one of many con-
tinuations of a computation succeeds, also be asked to check whether all of a number
of continuations succeed; another word for this is PARALLELISM.

4-12 deÆnition. An ALTERNATING TURING MACHINE (ATM) is a tuple
M � �k�Q�Σ� �� q0� g�, where

k is the number of tapes;

Q is a finite set of STATES including accept and reject;

Σ is a finite TAPE ALPHABET consisting of an input alphabet T plus the symbols $ (end
marker) and # (blank symbol);

� � �Q 
 Σk�
 �Q
 �Σ� f#g�k 
 f�1� 0��1gk� is the NEXT MOVE RELATION;

g : Q � f���g designates each state UNIVERSAL or EXISTENTIAL.
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The next move relation � should be understood as follows: when the machine’s state
is q1 the symbols under the tape heads are �a1� � � � � ak�, and delta contains an element

d � ��q1� �a1� � � � � ak��� �q2� �b1� � � � � bk�� �m1� � � � �m2����

then the machine can, when g�q� � �, or must, when g�q� � �, make the following
step: the symbols b1� � � � � bk are written to the tapes, the machine moves the heads
left, when mi � �1, right, when mi � �1, or not at all, when mi � 0, and finally
enters state q2. The machine may be thought of as executing any number of threads in
parallel.

A CONFIGURATION or INSTANTANEOUS DESCRIPTION of the machine is an element
of the set

CM � Q
 ��Σ � f#g���k 
 INIk

representing the machine’s state, the contents of the k tapes, and the positions of the
tape heads.

The machine has k tapes which each contain the input string w � T� in the initial
configuration (heads at position 0)

�M�w� � �q0� w� � � � �w� �z �
k

� 0� � � � � 0� �z �
k

�

The SUCCESSOR RELATION �, derived immediately from �, defines how configurations
change when a move is made; given a configuration�, there may be several SUCCESSOR

CONFIGURATIONS � such that � � �. Formally, � � � when

� � �q1� a
1
1 � � � a

1
h1
� � � a1

n1
� � � � � ak

1 � � � a
k
hk
� � � ak

nk
� h1� � � � � hk�(4.7)

� � ��q1� �a
1
h1
� � � � � ak

hk
��� �q2� �b1� � � � � bk�� �m1� � � � �mk���(4.8)

� � �q2� a
1
1 � � � a

1
h1�1b1a1

h1�1 � � � a
1
n1
� � � � � ak1 � � � ak

hk�1bkak
hk�1 � � � a

k
nk
�(4.9)

h1 � m1� � � � � hk � mk��

ACCEPTANCE by an ATM is defined as follows: Let � be a configuration, whose state
is q.


 If q is accept, M accepts �;


 if q is reject, M rejects �.


 If q is a universal state, M accepts � if it accepts all successor configurations of
�.


 If q is an existential state, M accepts � if it accepts in one of the successor
configurations of �.

Now M accepts a string w if it accepts the initial configuration �M�w�.
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4-13 classiÆcation.
(i) A NONDETERMINISTIC TURING MACHINE (NTM) is an ATM without universal states.

(ii) A DETERMINISTIC TURING MACHINE (DTM) is a NTM whose next move relation
� is a function (this definition supersedes the informal 4-10).

(iii) Tape number i of an ATM is READ-ONLY if in each d � � as above, ai � bi.

*

The following proposition is an important result. It would go too far to even repeat
sketches of the proofs here; but I will prove a version of a subproblem in the next
chapter: the case of iLMG and read-only ATM.

4-14 proposition. [CKS81]
LOGSPACE-ATM = PTIME-DTM
SPACE�n�-ATM = EXPTIME-DTM

Least Æxed point calculi

Grammars in iLMG can be regarded as “economic” versions of formulae in ROUNDS’
[Rou88] calculus iLFP which defines languages in terms of integer arithmetic, and
describes exactly the languages that can be recognized in polynomial time. This is
proved in [Rou88] using a correspondence to logspace-bounded ATM and applying
proposition 4-14.

4-15 deÆnition: iLFP. Let Ivar � f x1� x2� x3� � � � g be an indexed set of INDIVID-
UAL VARIABLES, and Pvar a set of PREDICATE VARIABLES (A�B�C� � � �), and let each
predicate variable A be assigned an ARITY a�A�.

Formulae in the calculus iLFP are constructed inductively as follows:

1. If A � Pvar, n � a�A� and x1� � � � � xn � Ivar, then A�x1� � � � � xn� is a formula.

2. If � and 
 are formulae and x � Ivar, then ��
, ��, �x� � (&c.) are formulae.

3. A TERM in iLFP is an individual variable, the symbol 0, the symbol $, or t � 1
where t is a term.

If t1 and t2 are terms, then t1 � t2 is and t1 � t2 are formulae.

4. A RECURSIVE SCHEME Φ is a tuple �Φ1�Φ2� where Φ1 is a finite subset of Pvar
and Φ2 is a function that assigns to each A � Φ1 a formula �A. The DEFINING

CLAUSE for A is then A�x1� � � � � xa�A�� � �A. A recursive scheme can be
written down as a list of defining clauses.

If � is a formula and Φ is a recursive scheme, then �Φ�� is a formula.

4-16 example: translation of tuple grammars to iLFP. The context-free gram-
mar of figure 1.1 is translated into iLFP as (4.10), entirely along the lines of its trans-
lation to iLMG. It is now immediately obvious that a similar translation exists for any
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grammar that can be represented in iLMG. Moreover, such an iLFP translation does
not contain terms or (in)equality subformulae other than x � 0 and y � $.

� � Csub�i� k� � �j� C�i� j� � V0�j� k�

V0�i� k� � �j� N0�i� j� � VI�j� k�

VI�i� k� � ��j� VT�i� j� � N0�j� k�� �
��j� VR�i� j� � V0�j� k�� �
swim�i� k�

VT�i� k� � drank�i� k� � drink�i� k�

VR�i� k� � saw�i� k� � see�i� k� �
hear�i� k� � help�i� k�

N0�i� k� � Frank�i� k� � Julia�i� k� �
Fred�i� k� � coffee�i� k�

C�i� k� � that�i� k� ��Csub�0� $�

(4.10)

The formula Csub�0� $� is an abbreviation for �x��y� x � 0 � y � $ � Csub�x� y��

*

The recursive schemes in iLFP are as the clauses of an iLMG, or the productions of
a CFG. The interpretation of an iLFP formula closely resembles that of a CFG using
the least fixed point interpretation of 1-9. An iLFP formula is interpreted w.r.t. to an
input string w � a1 � � � a$ that is represented as a set of axioms: for each 1 	 i�	 $,
the predicate ai�i � 1� i� is taken to be true.

4-17 deÆnition: interpretation of iLFP. A PREDICATE ASSIGNMENT � is a set of
predicates A�i1� � � � � ia�A�� where i1� � � � � ia�A� are integer numbers between 0 and n.

Let w � a1 � � � a$ be a sentence, where a1� � � � � a$ are in Pvar. The INITIAL

ASSIGNMENT �0 � �0�w� contains all and only the predicates ai�i � 1� i�.

A VARIABLE ASSIGNMENT � is a function from Ivar to integer numbers between 0
and n. The INTERPRETATION ����� of an iLFP formula � is a function from nonterminal
assignments to variable assignments. A formula � is TRUE for w if its interpretation
������0 applied to the initial assignment is not empty.

The interpretation is defined inductively as follows:

1. ��A�x1� � � � � xn���� � f � j A���x1�� � � � � ��xn�� � � g

2. ��� � 
��� � ����� � ��
�� and so forth for the other logical connectives

3. ���x����� � f � j �i 	 n : ��x � i� � ������ g, where ��x � i� is the variable
assignment that agrees with � except for the variable x, to which it assigns i.
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4. ��t1 � t2��� � f � j ��t1� � ��t2� g where ��t� is the integer number obtained
by substituting ��x� for every variable x occurring in t and substituting n for $.
Analogously for �.

5. ���Φ����� � �����
�S�

k�0��Φ��k�



where ��Φ��� � � � f A�i1� � � � � ia�A�� j A �
Φ1 and �� � ��Φ2�A���� such that ��xk� � ik g

*

The interpretation of a recursive scheme here needs, in contrast to the previous example
of the fixed-point construction in 1-9, to be made continuous by explicitly joining � in
with ��Φ���.4

It is now straightforward to check how formula (4.10) says that S�0� $� should
hold, where S is the smallest relation over two integer numbers satisfying the clauses
between the square brackets.

Let’s look at the sentence that Julia drank coffee, and let’s denote the recursive
scheme in (4.10) by Φ. Then n � $ � 4, and

�0 � f that�0� 1�� Julia�1� 2��
drank�2� 3�� coffee�3� 4� g

(4.11)

�1 � ��Φ���0 � �0 � f VT�2� 3�� N0�1� 2�� N0�3� 4�� C�0� 1� g(4.12)

�2 � ��Φ���1 � �1 � f VI�2� 4� g(4.13)

�3 � ��Φ���2 � �2 � f V0�1� 4� g(4.14)

�4 � ��Φ���3 � �3 � f Csub�0� 4� g(4.15)

� f that�0� 1�� Julia�1� 2��
drank�2� 3�� coffee�3� 4��
VT�2� 3�� N0�1� 2�� N0�3� 4�� C�0� 1��
VI�1� 3�� V0�0� 3�� Csub�0� 4� g

�
4�

k�0

��Φ��k�0

So ���Φ�Csub�x� y����4 contains the assignment x � 0� y � 4, and formula (4.10) is
true.

The following proposition links iLFP and deterministic polynomial time; I will
not give the proof here, but the constructions in section 5.1 will closely resemble those
of Rounds.

4-18 proposition. [Rou88] The languages recognized by iLFP formulae are the
same as those recognized by an ATM in log space.

*

4This is not the case in Rounds’ original formulation, which limits the use of the negation operator in
such a way that atomic predicates can occur only positively.
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While iLFP is useful for showing rigorously that for a given linguistic formalism
there must be a fixed recognition procedure with a polynomial time complexity, it
doesn’t give a precise upper bound to this complexity. For example, Rounds speaks
of an O�n18� upper bound to recognition time of head grammars, which are known
to be recognizable by more informally defined device in time O�n6�, and O�n12� for
context-free grammars as opposed to the generally accepted value O�n3�. Rounds
doesn’t go into great detail, and closer inspection of the proof of 4-14 shows that the
results will probably get even a bit worse: the number of variables in the iLFP formula
is not squared, but raised to the power 3 in the 1-tape simulation (see proposition 5-8).

Relating iLMG to iLFP

Although as said, the next chapter will carry out a version of Rounds’ proofs directly
for iLMG and S-LMG, and hence it will follow that iLMG and iLFP both describe
PTIME, it is worth looking in a bit more detail at how iLMG and iLFP relate. Clearly,
iLMG can be regarded as a sort of ‘undressed’ version of iLFP; the equivalence of
the formalisms suggests that universal quantification, negation, successor, equality and
inequality in iLFP are redundant. Proposition 4-20 shows that not only this is the case,
but also the number of variables in a clause of a corresponding iLMG is not larger
than that in the original iLFP formula.

4-19 proposition. For every iLMG, there is a weakly equivalent iLFP formula.

Proof. Straightforward. The clauses of the iLMG directly represent a recursive
scheme. It is a standard exercise (done for CFG in chapter 1, proposition 1-10) to
show that the fixed point semantics of the iLFP scheme is equivalent to the derivational
semantics of the iLMG. �

4-20 proposition. For every iLFP formula, there is a weakly equivalent iLMG.

Proof. (outline) (i) collapse all embedded recursive schemes into one recursive
scheme; this can be done by standard variable renaming techniques. Assume moreover
that the formula is of the form �Φ�S�0� $�, where the schema Φ does not contain the
constants 0 and $. (This can be done by increasing the number of arguments to all
predicates defined in Φ by 2).
(ii) note that 
 can be represented as ���; and introduce new predicate variables for
subformulae of defining clauses until each defining clause is either in �-�-� normal
form or of the form A�x1� � � � � xn� � �B�x1� � � � � xn�.
(iii) translate the negation free, normal form clauses into an iLMG, where �, � and
�1 are replaced with predicates, the clauses for which are straightforward.
(iv) for every A�� � �� � �B�� � �� clause left untranslated, add a nonterminal B�, and
replace all occurrences of A in the iLMG with B�. Construct clauses for these negated
nonterminals as follows:
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for B � T: there will be a number n of clauses for B:

B��x1 � :- C11��y11 �� � � � �C1m1��y1m1
��

...
B��xn � :- Cn1��yn1 �� � � � �Cnmn��ynmn

��

Introduce new nonterminals B�1 � � � � �B
�
n , and the following clauses:

B���x1 � :- B�1 ��x1 �� � � � �B�n ��x1 ��

B�1 ��x1 � :- C�
11��y11 ��

...
B�1 ��x1 � :- C�

1m1
��y1m1

��
...

B�n ��xn � :- C�
n1��yn1 ��

...
B�n ��xn � :- C�

nmn
��ynmn

��

for B �� T: Let B � b be a terminal symbol. Then add the clauses

b��x� z� :- c�x� y�� ITS�y� z�� [for all b �� c � T]
b��x� z� :- b�x� y�� ITP�y2� z��
b��x� y� :- ITS�y� x��

ITS�x� x��
ITS�x� y� :- ITP�x� y��
ITP�x� z� :- c�x� y�� ITS�y� z�� [for all c � T]

(ITS and ITP are nonterminals that recognize arbitrary strings in T� and T�,
respectively). �

4-21 corollaries. The construction in the proof of proposition 4-20 does not increase
the total number of variables appearing in the iLFP clause during the translation process
to iLMG, provided that an iLFP formula is in the normal form described under (i) in
the proof of proposition 4-20). This has the following consequences:

1. For iLFP, as for iLMG, the highest number of variables appearing in a clause
of a formula determines the polynomial bound for the time complexity;

2. From item (iv) in the proof it follows that n-iLMG (and therefore n�S�LMG,
see the following chapter) are closed under complement; in fact negation can be
added at clause level, yielding a formal5 proof that grammars in the n-MCFG
or simple n-LMG spectrum enriched with REJECT PRODUCTIONS ([Vis97] p52ff)
remain in n-S-LMG; and hence preserve their polynomial complexity bound.

5Visser has a “proof by algorithm” of the tractability of reject productions—this algorithm however
covers parsing whereas my construction concerns recognition only.
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Conclusions to chapter 4

This chapter introduced a number of well-known concepts,partly in a notational system
and from a point of view that clears the way for the approach of the next few chapters.

It has also shed light on the rôle of sentence indices in informal complexity rea-
soning, and how this leads to straightforward top-down parsing algorithms. The
predicate-descent method proposed in section 4.2 is the most straightforward realiza-
tion of such algorithms, and I haven’t seen this idea being formulated directly in the
literature, which seems to have a focus on going through a string from its ‘beginning’
to its ‘end’—a model that becomes problematic when nonterminals are allowed to
derive tuples of strings that may end up in different places in a derived sentence. An
essential observation is that the undirectional approach does not break the standard
time complexity results of O�n3� for CFG and O�n6� for TAG, provided that the
algorithms are formalized within the random access model of computation.

Also new is the direct deterministic Turing machine implementation of a group
of variants of YOUNGER’s algorithm. It seems to be adaptable to PMCFG without
much effort, and the remarks by YOUNGER about universal recognition seem to hold
too; certainly for MHG. I have not been able to find the time to investigate rigorously
whether this indeed extends to a universal recognition algorithm for PMCFG that is
polynomial in the length of the input; this seems to be in contradiction with claims
made on the literature, but in section 5.3 in the next chapter, I will argue that this is
not the case.

I have convinced myself that an extension of Younger’s algorithm to iLMG/S-
LMG is considerably harder, because sharing on the RHS of LMG clauses destroys
the possibility of induction on the size of the items. Moreover, the reduction result to
an analogue of CNF does not seem to work for simple LMG in general.

Although the iLMG formalism is fairly generally applicable for formalization
parsing strategies, sometimes enriched versions of iLFP are more convenient, such as
when I devise strategies for XG parsing in chapter 6. The reduction of iLFP to iLMG
proved in the last section of the current chapter ensures that such rich descriptions
preserve the possibility to use the predicate-descent complexity heuristics based on
counting the number of variables in clauses.



Chapter 5
Literal movement grammar

I promised in chapter 3 to show later that the general class of LMG generate all recur-
sively enumerable languages, and that a restriction, SIMPLE LMG, has a recognition
problem solvable in polynomial time. This is the subject of this chapter.

5-1 proposition. The class LML of languages recognized by generic LMG is pre-
cisely the class of recursively enumerable languages.

Proof. It is a well-known result (see e.g. [Gin75] p. 125) that any r.e. language
L can be described as h�L1 � L2� where h is a homomorphism and the languages
L1 � L�G1� and L2 � L�G2� are context-free. Proposition 3-27 implies that each
context-free grammar is an LMG; proposition 3-22 proved that LMG are closed under
homomorphism and 3-28 proves closure under intersection. �

In the previous chapter I showed how integer sentence indices are the key to finding
efficient—polynomial time—recognition algorithms. There, attention was limited to
context-free grammar and head grammar, although I already defined iLMG as an
intermediate language.

In this chapter, I will establish an additional proof cycle between S-LMG, iLMG
and read-only alternating Turing machines, touching briefly on the correspondence be-
tween this unorthodoxclass of read-only alternating Turing machines and deterministic
polynomial time.

I will also investigate how one may obtain tight bounds to the exponent c such
that classes of simple LMG are recognizable in O�nc� time, look at the problem
of universal recognition and the discrepancy between Turing machine and random
access models, and discuss another version of LMG that corresponds to deterministic
exponential time.

105
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5.1 Complexity of simple LML

Chapter 3 introduced simple LMG, without arguing for the particular format of clauses
that this restriction required. The constraint of noncombinatoriality naturally arises
when one is thinking about a naive top-down implementation of a recognition algorithm
based on LMG. But the why precisely simplicity as stated in definition 3-26?

The examples have already shown how LMG subsumes the chain CFG � HG �
LCFRS � PMCFG of formalisms of increasing generative capacities. The fixed
recognition problems for these formalisms are known to be decidable in polynomial
time. I will now show that simple LMG is interesting from a formal point of view, be-
cause it describes exactly the class PTIME of languages recognizable in deterministic
polynomial time.

First, I will show that S-LMG can be mapped to iLMG; then, that iLMG can be
mapped to read-only ATM and finally, that read-only ATM can be modelled in S-
LMG. The resulting chain of results is summarized schematically in figure 5.1. One

S-LMG PTIME-DTM

5-6 5-9 5-8

iLMG RO-ATM
5-7

Figure 5.1: Results in this section.

link that is not made very explicit here or in the previous chapter— it was only briefly
sketched in proposition 4-20—is that S-LML indeed contains PTIME. However, it
is well-known that read-only ATM amounts to the same thing as a logspace-bounded
ATM; alternatively, the equivalent of 5-9 for logspace-bounded ATM can be found in
[Gro98]. Section 5.2 will discuss obtaining tight bounds to the degree of polynomial-
time algorithms for simple LMG.

Motivation for the simplicity constraint

Least fixed point semantics of rule based grammar are attractive in many ways; in the
case of LMG, they will give a link to the integer sentence index model, as well as some
insight into why the property of simplicity is a sensible restriction to the general form
of LMG rules in order to get tractable recognition. iLMG as defined in the previous
chapter will serve as an intermediate representation.

5-2 deÆnition: lfp semantics for LMG. Let G � �N� T�V� S�P� be an LMG. Let
NA be the set of nonterminal assignments: functions � mapping a nonterminal to a set
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of arbitrary tuples of strings over T. The set of productions P is then associated with an
operator ��G�� taking an assignment as an argument and producing a new assignment,
defined as follows: if � is an assignment, and

A�w1� � � � �wp� :- B1�v
1
1� � � � � v

1
p1
�� � � � �Bm�vm

1 � � � � � v
m
pm
��

is an instantiation of a clause in P, and for each 1 	 k 	 m, �vk
1� � � � � v

k
pk
� � ��Bk�,

then �w1� � � � �wp� � ���G�����A�.

Define the complete partial order �NA�v�, the bottom element �0 and the join t
as done before for context-free grammars; then ��G�� is a continuous and monotonic
operator on �NA�v�.

�1 v �2 � 
A � N� �1�A� � �2�A� :(5.1)

�0�A� � � for all A � N(5.2)

�
G

X��A� �
�
��X

���A��(5.3)

The interpretation of a grammar is then the least fixed point of ��G��:

IG �

�G
k�0

��G��k�0(5.4)

i.e. a function which takes a nonterminal and yields a set of tuples of strings. If the
arity of start symbol S throughout the grammar is 1, then IG�S� will be the language
recognized by the LMG in the traditional sense; otherwise obtain the language by
concatenating the tuples in IG�S�.

*

As before, it is easy to check that the rewriting semantics and the fixed point semantics
are equivalent. The fixed point semantics is a useful tool for several purposes. It is
an interpretation of grammars that is both mathematically elegant and more detailed
than a rewrite semantics. More detailed, because it does not merely characterize the
language generated by a single designated start symbol, but characterizes each of the
nonterminals separately (i.e. the way the grammar classifies phrase types), and reflects
the derivational behaviour of the grammar, without looking at single derivations in
particular.

Now remember that the aim is to find out how the LMG grammars can be restricted
in such a way that recognition can be performed as an alternating search in logspace.
For a given string of length n, in space log n one can encode a bounded set of numbers
ranging from 0 to n (in binary encoding). This means that the arguments of an LMG
predicate in a derivation have to be encoded each with a bounded set of numbers. This
is precisely what iLMG, defined in the previous chapter, does.

To make the step from LMG to iLMG smaller, introduce the following interpre-
tation relative to a given input string.
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5-3 deÆnition: substring Ælter. Let � � NA and define the operator u restricting
an assignment to a string as follows: �w1� � � � �wn� � �� u w��A� iff �w1� � � � �wn� �
��A�, and w1� � � � �wn are substrings of w; furthermore put ���G��uw���� � ���G����uw.

*

The question is now: how can I make sure that�
�G

k�0

��G��k�0

�
u w �

�G
k�0

���G�� u w�k�0?

Redefine the fixed point semantics as follows.

5-4 deÆnition: integer lfp semantics for LMG. Let w � a0a1 � � � an�1 be a ter-
minal string of length n; thenNAw is the set of INTEGER NONTERMINAL ASSIGNMENTS

� FOR THE INPUT w, mapping a nonterminal to a set of tuples of pairs of integers
between 0 and n. Then define ��G��w as follows: if � is an integer assignment and

A�al1 ���ar1 � � � � � alp���arp� :- B1�al11
���ar1

1
� � � � � al1p1

���ar1
p1
��

� � � �
Bm�alm1

���arm
1
� � � � � almpm

���arm
pm
��

is an instantiation of a clause in P, and for each 1 	 k 	 m,

�
�
lk1� r

k
1

�
� � � � �

D
lkpk
� rk

pk

E
� � ��Bk��

then

�hl1� r1i � � � � hlp� rpi� � ���G��w���A��

*

It is important to see that what is done here, is in the general case not the same as taking
the string-based least fixed point semantics 5-2, and intersecting the sets of tuples with
the domain of substrings of a given w, as in definition 5-3. An instantiated clause

A�w1� � � � �wp� :- B1�v
1
1� � � � � v

1
p1
�� � � � � Bm�v

m
1 � � � � � v

m
pm
��

such that w1� � � � �wp are substrings of w, but the vi
j are not, will be ignored in the integer

least fixed point semantics: even though all wi are substrings and A�w1� � � � �wp�
is derived by the grammar, it cannot be ‘reached’ with a derivation in which only
substrings of the input appear.

So this type of clause needs to be ruled out; that is if w1� � � � �wp are substrings of
the input, then so must the vi

j. This now is why simple LMG is defined by disallowing
terms other than single variables on the right hand side of the clauses. In this way, each
rule can be uniquely replaced by a clause that is talking about integer positions instead
of strings, while allowing the sharing constructions that cannot be handled by multiple
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context-free grammars (cf. example 3-32). Note that variables on the RHS that do not
appear on the LHS must also be disallowed, because these could be instantiated with
any string.1

5-5 deÆnition: simple LMG, repeated. An LMG is called SIMPLE if its clauses
R � P are all of the form

A�t1� � � � � tp� :- B1�x
1
1� � � � � x

1
p1
�� � � � � Bm�x

m
1 � � � � � x

m
pm
��

where the variables xi
j on the RHS need not be disjoint, but each these variables appears

precisely once in t1� � � � � tp.

*

Finally then, proposition 5-6 is the translation from simple LMG to iLMG, from
which it follows that S-LML is recognizable in polynomial time.

5-6 proposition. For every S-LMG there is a weakly equivalent iLMG.

Proof. Let G be a simple LMG. First, construct a weakly equivalent simple LMG
G� � �N� T�V�� S�P�� such that for each predicate A�t1� � � � � tn� on the LHS of a clause,
ti, either

type 1. n � 1 and t1 is a single terminal symbol, or

type 2. all ti are sequences of variables only.

Then G�� � �N � T�V��� S�P��� is constructed as follows.

Let V�� contain two unique new variables l and r. A clause A�a� in P� of type 1 is
translated as A�l� r� :- a�l� r� in P��.

For each clause R� of type 2 in G�, P�� contains a clause R��. Let the LHS of R� be
A�t1� � � � � tn�, and ti � yi

1 � � � y
i
pi

(all yi
j are disjoint by definition). Then V�� contains

unique new variables yi
0, 1 	 i 	 n, and R�� is obtained by replacing the LHS of R�

by A�y1
0� y

1
pi
� � � � � yn

0� y
n
pn
� and replacing each variable yi

j in the RHS of R� by the two
variables yi

j�1� y
i
j.

It is now straightforward, given w, to prove inductively that G� recognizes a term
over substrings v � al � � � ar, if and only if G�� recognizes the same term with each
substring v encoded as a pair l � 1� r. Conversely, G� will recognize only predicates
over substrings of w because G� is simple. �

The converse, going from iLMG to LMG is not trivial, because we cannot simply
take the integer arguments up as pairs i� j such that i 	 j. Instead, integers must be
represented as substrings of the input string w. Instead, I will repeat Rounds’ ATM
construction for the simpler case of read-only ATM, which is no harder than reducing
iLMG to simple LMG.

1The decision not to allow variables to appear on the LHS more than once is more arbitrary—it does not
influence the weak generative capacity.
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Read-only ATM

This is a simple reconstruction of Rounds’ implementation of iLFP on a regular
alternating Turing machine. Because iLMG does not have the arithmetic operations
of iLFP, a much simplified model of an ATM that has k read-only input tapes, and no
read-write tapes, is sufficient, where k is the largest number of variables appearing in a
clause of the iLMG. This then yields a slightly tighter polynomial time bound, when
I work out the read-only alternative to CHANDRA et al.’s THEOREM 3.3 in [CKS81].

5-7 proposition. Every iLML can be recognized by a read-only ATM.

Proof. Let an iLMG G � �N� T�V� S�P� be given. Assume that each nonterminal
appears with only one arity; in particular, the start symbol appears uniquely with arity
2. For each clause R, pR is the number of variables on its LHS and rR the total number
of variables in the clause.

Let r be the largest number of variables used in a clause in P; assume that V �
fx1� � � � � xrg; for each clause, assume that the variables used are x1� � � � � xrR , and the
variables on the LHS are x1� � � � � xpR

.

The ATM M now has r tapes, all of which are read-only and contain the input
string when the machine is started. M has states qA for each nonterminal, qR for each
clause, qR

l for each clause R and each tape/variable number l, and a number of auxiliary
substates of these.

Assume the input string is w � a1 � � � an. In the initial state, the machine moves
the head of tape 2 to its end (position n), and enters state qS.

The states license the following actions:

State qA :
�

R�P�A�

�enter state qR�

where P�A� is the set of rules whose LHS is an A-predicate.

For nonterminal clauses R:

State qR : move tapes pR � 1 � � � rR to initial position, and enter state qR
pR�1

State qR
l � l 	 rR : �enter state qR

l�1� � �if not at end, move head l right��

State qR
r�1 :

�
��B����� on RHS of R

�copy tape head positions2and enter state qB��

For terminal clauses A�i� j� :- a�i� j��:

State qR: check that the terminal under head 1 is a, then check that if head 2 is
moved leftward, it points at the same cell as head 1; if success enter qaccept
else qreject.

2In the worst case, copying the positions of the heads to copy the variables may require one additional
tape. This can be circumvented by multiplying out the machine’s states over all permutations of the tapes.



5.1. Complexity of simple LML 111

Now M follows precisely the derivational interpretation of the iLMG w.r.t. the input
string w. �

5-8 proposition. A k-tape read-only ATM can be simulated on a 1-tape DTM in
time cn3k, where n is the size of the input string.

Proof. Analogous to [CKS81], THEOREM 3.3. Lay out the instantaneous descriptions
of the ATM M on the tape of DTM N. There are t � jQMjn

k IDs. The execution paths
of the ATM are guaranteed to terminate in t steps or to run forever. Initially, mark all
accepting IDs accept, rejecting IDs reject, all other IDs unknown.

Then do t passes over the tape; for each cell, look up the values at the successor
IDs (this requiresO�t� time as these configurations may be anywhere on the tape), and
compute their 3-valued boolean product.

So the machine makes t passes of each O�t2� steps.3 �

The circle is made complete by showing that a read-only alternating Turing machine
can be simulated by a simple LMG. A similar, more involved proof translating a
logspace-bounded ATM in S-LMG is in [Gro98].

5-9 proposition. For any read-only ATM M, there is anS-LMG G such thatL�G� �
L�M�.

Proof. Let the input string be w � a1 � � � an. Let w.l.o.g. universal states not move
any heads. The LMG has one nonterminal for each state of the ATM, plus a start
symbol S and two auxiliary nonterminals PlusOne and PlusTwo. An instantaneous
description �q� h1� � � � � hk� is represented by the instantiated LMG predicate

q�w� a1���ah1 �w� a1���ah2 �w� � � � � a1���ahk �w��

The first copy of w is the ‘fuel’ for the operations PlusOne and PlusTwo, that will be
responsible for simulating movement of the tape heads. The start rule is

S�x� :- q0�x� �� x� �� x� � � � � �� x��

Now reading a tape, moving left and moving right can be straightforwardly simulated.
Every m-fold existential state will correspond to a nonterminal with m clauses which
each have on their RHS k auxiliary predicates and one successor predicate. Each
m-fold universal state corresponds to a nonterminal with 1 clause whose RHS contains
m successor predicates.

A simple example, assuming just one tape and a single successor state is

q1�m� xc� yz� :- PlusTwo�m� x� y�� q2�m� y�m��
PlusTwo�am� ax� ay� :- PlusTwo�m� x� y��
PlusTwo�abm� �� ab�� � for each a� b � T �

(5.5)

3Note that this is a factor t more than Rounds suggests. I don’t see how this can be improved in this
1-tape construction, although it can be improved using a reduction from multi-dimensional BAM to 2-tape
1-dimensional TM.



112 Literal movement grammar

State q1 checks that the symbol under the head is c, and if so, moves the head one
symbol to the right and checks state q2. The auxiliary nonterminal PlusTwo generates
the right move.; PlusOne would generate no move, and using x directly generates a
left move.

Finally, there is one clause qaccept�x1� � � � � x2k�1��, and no clause for qreject. �

We can now conclude that iLMG, S-LMG and RO-ATM all generate PTIME.

5-10 corollary. S-LML � iLML � L�RO-ATM� � PTIME-DTM.

Proof. The equivalence of S-LML, iLML and L�RO-ATM� follows by the chain
5-6, 5-7 and 5-9. Equivalence between iLMG and PTIME was already proved in the
previous chapter. Alternatively, RO-ATM in PTIME by 5-8 and PTIME in S-LML
by the proof in [Gro98]. �
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5.2 Finding the degree of the polynomial

Under the RAM model of computation, recognition can be performed by the iLMG
predicate descent algorithm outlined in the previous chapter (example 4-8). The
algorithm will store iLMG items in its memo table, which results in a space complexity
of O�np� where p is the largest arity of an iLMG nonterminal. Each item needs to
be computed only once, and the function for a clause R contains qR nested loops over
0 � � � n where qR is the number of variables on the RHS of the clause that do not appear
on its LHS. So the total time complexity is O�nr� where r � maxR�P pR � qR is the
largest number of variables in a clause in the iLMG.

5-11 classiÆcation: analysis of simple LMG examples. In terms of S-LMG,
pR is 2 times the number, say aR, of arguments in a predicate occurring in the grammar,
and qR corresponds to the maximal difference between the total number of variables
in a clause and the number of argument positions of the predicate on its LHS—each
additional variable introduces an extra index that needs to be looped over. Because
the time complexity can be calculated as the sum of the times spent for each single
clause, this means that the polynomial complexity bound for the grammar is r �
maxR�P aR � bR where bR is the total number of variables in the clause R. The space
complexity bound p is 2a where a � maxR�P aR.

To see that this analysis also works for grammars like (3.16) which have both
terminal symbols and variables on the LHS (which means they don’t satisfy the
w.l.o.g. condition on the format of clauses in proposition 5-6), it should be noted that
the terminals do not introduce any independent index values, because their length as
a string is always 1. The bounds thus obtained for formalisms such as MHG whose
recognition problems have been studied in the literature are tight; no better results are
known. This is summarized for formalisms in chapter 3 and grammars in section 3.5
in figure 5.2.

The PMCFG grammar fora2n
in figure 3.7 is left out of this analysis because it has

reduplication which is not allowed in simple LMG. When it is translated to a simple
LMG using an Eq predicate, the resulting time complexity would be n4; however, a
smarter predicate descent approach which would check that the two occurrences are

Grammar a max. aR � bR p = 2a r space time

bilinear CFG 1 1 � 2 2 3 n2 n3

MHG 2 2 � 4 4 6 n4 n6

(3.16) (anbncn), p72 2 2 � 2 4 4 n4 n4

figure 3.10 (Dutch), p74 4 3 � 5 8 8 n8 n8

figure 3.13 (German), p79 2 2 � 3 4 5 n4 n5

Figure 5.2: Tuple grammars and their complexity bounds.
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equal strings immediately gets a time bound of n3, because there are n2 items each
taking O�n� time for splitting up the argument string and checking the equality. So
use of reduplication accounts for a single extra factor n in all cases. This is precisely
what is done in the prototype implementation described in section 7.2.

*

The bounds obtained here can be formalized in terms of random access machines.
In the Turing machine constructions of section 5.1 however, the polynomial bounds
I just calculated are tripled. This can be reduced to only O�n2r� by the following
argument: the predicate descent algorithm does not need random memory access if it
is executed on a Turing machine with an r-dimensional tape. It is a known result that
an n-dimensional BAM can be reduced to a 2-tape 1-dimensional DTM, where the
execution time gets squared.

This is the best general result that I can see, but for MHG, this construction yields
anO�n12� algorithm as opposed to theO�n6� implementation illustrated in section 4.3.
It remains remarkable, and unsolved, that while the Turing recognizer for MHG of
section 4.3 can be extended to one for PMCFG that has the correct polynomial bound
of O�n6�, this seems to be impossible for the general case of simple LMG, because
due to the possibility of sharing variables on the RHS, the induction on the total length
of the string arguments fails.4

One the one hand a conclusion could be that a Turing model is highly idealized
and very suitable for reasoning about large classes such as PTIME, but less suited
for talking about bounded polynomial classes. On the other hand, the RAM model is
an idealization too, because it assumes the presence of limitless amounts of memory:
a space complexity of n4, assumed layed out as a 4-dimensional array in computer
memory, cannot realistically be called ‘tractable’. A sentence of 10 words would
already require 20.000 units of storage; a Pascal program of numerous kilobytes
would not be machine parsable.

In practice therefore, one often reverts to representing the storage through linked
data structures to avoid reserving storage that will not be used. These multi-dimensional
linked lists need to be traversed, and although this does not double or triple the polyno-
mial bound as in the generic Turing implementation, it does increase time complexity
by a factor n (linear storage) or log n (storage as binary trees).

4It would moreover be interesting to see if this descrepancy between formalisms like n-PMCFG whose
underlying tree sets are local, and the intersection-closed simple n-LMG, also yield different results for
other known methods of predicting tractability and polynomial bounds, such as [McA93]. It seems unclear
to me what model of computation McAllester relies on, and whether this has consequences for his analysis.
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5.3 Parsing and universal recognition

Putting the discrepancy between the RAM and TM models aside, another thing to
note is that so far the complexity study was limited to FIXED RECOGNITION. Without
leaving the formal complexity perspective of this chapter, important questions to be
raised are (i) what about UNIVERSAL RECOGNITION, that is, writing an algorithm that
performs its task for any given grammar, rather than recognizing a single language and
(ii) how about algorithms that return a representation of the possible derivations of a
sentence rather than a crude yes or no?

I will pay most attention here to the first question, leaving the second to chapter
7, which is of a more practical nature; formally, it would suffice to say that the memo
table after execution of a predicate descent algorithm contains information that could
be qualified as a parse forest. A parse forest, however, is an unformalized notion, and
it is unclear whether it must contain explicit ‘links’ to daughter nodes, or whether these
need to be inferred from the grammar.

As to the first question, it has been argued in the literature that when size parameters
of the grammar are unknown in advance, that is the length of rules, and the number
of variables in the case of LMG type grammars, then universal recognition will take
at least exponential or nondeterministic polynomial time. For the latter class, it is
unknown whether there are problems that in PTIME-NTM but not in PTIME-DTM
(the P � NP problem). Examples of such claims are BARTON, BERWICK and RISTAD

[BBR87] (NP-hardness for GPSG and LFG), and KAJI et al. [KNSK92] (EXP-POLY
time hardness for PMCFG).

The content of these universal recognition results must be assessed very carefully—
what the authors suggest is often not what they are proving. When the NP-hardness
of LFG and GPSG is discussed in [BBR87], great effort is made to stress that it is
not a good argument to give an a priori bound to the number of features needed in
any possible natural language grammar. For any known such bound, a language may
be found that must be classified as a natural language, but needs more features to be
strongly-adequately described. However, this does not imply that the individual size
parameters of the grammar, that is the number of nonterminals, the dimensions of a
feature space, and in the case of LMG, the different numbers of variables in clauses
should be considered irrelevant in determining the complexity. And this is exactly
what both [BBR87] and [KNSK92] do: they express the execution time as a function
of the sum of the sizes of the grammar and the input. Moreover, they do not look at an
arbitrary grammar and an arbitrary input, but given a sentence, generate a grammar,
putting input and grammar together in one pigeon-hole.

This leads to apparently contradictory results: both of the following two statements
can be proven:

5-12 proposition. [KNSK92] The universal recognition problem for PMCFG is
EXP-POLY time hard.

5-13 proposition. The universal recognition problem for PMCFG can be solved
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in time O�cn3r�, where r is as in the previous section, and c depends only on size
parameters of the grammar.

Proof. Solve the problem immediately for iLMG. Do the translation of an iLMG
straight into DTM instead of using RO-ATM as an intermediate stage. The DTM
takes an iLMG G and a string w as its input. It computes the maximum size of the
RHS of clauses, and the parameters p and r. It then proceeds to simulate a DTM
performing fixed recognition for G. It lays out a machine-readable representation of
the finite state control device onto an extra tape; this is done in time dependent on the
size of G only. It calculates an elapse counter, and enters a state simulate and further
follows the instructions it has written on the extra tape. This final stage runs in time
n3r multiplied by a factor dependent only on the grammar. �

This is of course not to say that this ‘factor dependent on the size of the grammar’ is to
be neglected—in fact it very much needs to be studied in detail, but if so, independent
of the size and characteristics of the input. Under the RAM model, the exponent 3r is
reduced to r.

A similar argument holds for the case of GPSG which is less interesting at this
point, but is relevant to chapter 7. A GPSG can be encoded in a CFG, and universal
CFG recognition can be done in O�n3� time. In this case it has been proven that the
resulting ‘constant’ is of problematic proportions, but again, it does not depend on the
size of the input. While Barton et al.’s result does not look at these size parameters
individually, it is actually very worthwhile to know what quantitative properties of
language are responsible for exponential growth of time complexity and which are not.
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5.4 Complexity of bounded LML

Apart from iLFP, [Rou88] also introduces a calculus called cLFP which talks not
about integer indices but about strings and concatenation. This is of course very
similar to LMG; Rounds however decides to put a bound on the instantiations given
to variables ranging over terminal strings. The result is that cLFP describes precisely
the class EXPTIME of languages recognizable in deterministic exponential time.

5-14 deÆnition: cLFP. A cLFP formula is as an iLFP formula as defined in 4-15,
but replace the definition of a term by:

3. A TERM in cLFP is a terminal symbol, an individual variable, or t1t2 where t1
and t2 are terms.

If t1 and t2 are terms, then t1 � t2 is a formula.

The semantics is modified as follows: a PREDICATE ASSIGNMENT is a set of predicates
A�w1� � � � �wa�A�� over terminal strings. There are no axioms; the initial assignment
�0 is empty. The only interpretation rule that needs to be redefined is the one treating
quantification:

3. ���x����� � f � j �w� jwj 	 n : ��x � w� � ������ g.

4. ��t1 � t2��� � f � j ��t1� � ��t2� g where ��t� is the string obtained by
substituting ��x� for every variable x occurring in t.

5-15 proposition. [Rou88] cLFP generates precisely the class of languages recog-
nizable in time cn on a DTM.

*

Without going into details, the following equivalent bounded semantics can be given
for LMG.

5-16 deÆnition: bounded LMG. A generic LMG generates a string w under the
BOUNDED INTERPRETATION if the notion of instantiation is modified as follows: an
INSTANTIATED PREDICATE is of the form A�w1� � � � �wp� where w1� � � � �wp are of length
at most n, where n is the size of the input string.

Now interpret the LMG as in definition 3-19, but use the new notion of instantiation
and perform interpretation relative to the input string w.

5-17 proposition. Bounded LMG and cLFP recognize the same class of languages.

*

This correspondencebetween bounded interpretations and EXPTIME will prove valu-
able when I look at the complexity of classes of XG in chapter 6.
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Conclusions to chapter 5

The results on alternation and the complexity of simple LMG presented here are
simple modifications to analogous work done for the calculi iLFP and alternating
Turing machines in [Rou88] and [CKS81]. The added value of this chapter is the
format of iLMG and S-LMG. The notation of iLMG is more elementary, that of
LMG is more grammar-like, and the range of operations allowed in iLMG is minimal
w.r.t. the rich logical language iLFP. So I have proved that there is an amount of
redundancy in the LFP calculi.

On the other hand, the extra operations in iLFP make it a more versatile formalism.
This will become clear when iLFP is used to characterize extraposition grammar in
the next chapter.

By looking at the RAM model of computation, the concrete polynomial bounds can
be improved drastically. Under the Turing machine model, the bounds were improved
only slightly: in [Rou88], there was a small constant in addition to the exponent 2r
that has been removed in the constructions in this chapter; for MHG, this leads to
an O�n12� complexity instead of O�n20�. The relative gain of this improvement by a
constant polynomial factor is smaller for more complex formalisms.

It is regrettable that I didn’t get Younger’s deterministic Turing algorithm to work
for iLMG in general; the only hint as to whether this should at all be expected solvable
is the remark at the end of section 5.2 on the practical infeasibility of directly accessible
memo tables. In chapter 7 and in the Epilogue I will get back on the issue of universal
recognition.

Another unsolved question, that is more appropriate to mention here than at the end
of chapter 3 is whether n-S-LMG is strictly contained in n � 1-S-LMG. This seems
to be nontrivial, because it would have remarkable consequences for bounded-degree
subclasses of PTIME. A result using [CKS81] to prove the fact thatO�nr�-time-DTM
is included in r-iLML seems feasible, but is not a strict equivalence because for the
converse, I have only been able to get the correspondence under the RAM model.



Chapter 6
Computational properties of extraposition

grammar

This chapter will show first that XG in their original form from [Per81], i.e. under
the semantics of definition 2-2, describe any recursively enumerable language, which
implies that even though the extraposition construction in XG may be “clear and
concise”, it cannot be considered minimal in expressive power.

In section 6.1, I will show that when the number of brackets possibly introduced
in a derivation is bounded, a recognition algorithm can be constructed that runs in
exponential time. This is still not satisfactory if one insists that structural analysis
should be tractable (hint E in the Prologue).

In 6.2, the loose interpretation of definition 2-6, in combination with the island
rule 2-7, is then shown to have fixed recognition problems in deterministic polynomial
time. It has been shown in chapter 2 that XG under this interpretation are, from the
perspective of linguistic structure, not less capable than with the original semantics.

The recognition algorithms in this chapter are built on the material developed in
the previous chapter; to be precise, iLFP (or equivalently, simple LMG) allows one
to count brackets, cLFP (or equivalently, bounded LMG) allows one to keep track of
sequences of brackets with different labels.

119
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6.1 Non-decidability of generic XG

Thus far, there are no results in the literature on the computational properties of
extraposition grammar. This section shows that the original formulation of XG runs
into problems because in general, it is not decidable whether a sentence is recognized
by an a priori given XG. Before giving this result, it is useful to make a series of
simplifications to the semantics of XG.

Recall the rule types of definition 2-1:

1. A � X1X2 � � �Xn (a CONTEXT-FREE RULE)

2. A � � �B � X1X2 � � �Xn (an ELLIPSIS RULE)

and their rewriting interpretation:

1. �A� � �X1X2 � � �Xn�

2. �A�B� � �X1X2 � � �Xn��	�

6-1 proposition. The additional requirement in the interpretation of the ellipsis rule
that � contains no nonterminal symbols, does not change the semantics of XG.

Proof. Let d be the derivation of a terminal string from the start symbol S. Look at a
step s in d where an ellipsis rule A � � �B � C is used; this step is �A�B� � �C��	�.
Suppose � contains nonterminal symbols. Then for each of these nonterminals, there
will be a rule, applied after step s, to eliminate the nonterminal. Whatever such a
rule is, it cannot depend on � and � because � is enclosed in brackets. Hence these
rules could also have been applied before step s. Repeat the observation to obtain a
derivation in which � contains no nonterminal symbols. �

The modification in the semantics imposes a stronger restriction on the order of
the application of rules in an XG rewriting sequence. Quite remarkably, this extra
restriction seems to capture precisely what the brackets were used for in the original
interpretation: requiring � in the interpretation of the ellipsis rule to be terminal seems
to be the same as requiring the derivation graphs to have a planar representation as
explained in section 2.1. Hence the following bracket-free XG semantics.

6-2 deÆnition. BRACKET-FREE REWRITING in an XG is defined over unbracketed
sequences � � �N � T�� of nonterminal and terminal symbols as in a context-free
grammar. Let � and � be such sequences, let w be a terminal string and let a rule of
type 1, 2 be in P, then we have, respectively:

1. �A� � �X1X2 � � �Xn�

2. �AwB� � �X1X2 � � �Xnw�

6-3 proposition. Bracket-free derivation is equivalent to the original definition in
2-1.
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Proof. One implication is obvious given proposition 6-1. As to the other: suppose
there is a bracket-free derivation, then there is a derivation according to the original
definition (2-2). This is also simple: let d be a bracket-free derivation, then let the
bracketed derivation d� apply the same sequence of rules. Then d � is a correct deriva-
tion, because whenever it applies an ellipsis rule in a step�A�B� � �C��	�, � must
be a bracketing of a terminal string. So it only puts brackets around terminal strings;
that is no nonterminals appear inside matching brackets. Since � is immediately next
to the two nonterminals A and B, there cannot be any unmatched brackets in �. �

In three steps, I will now show that the class XL of languages recognized by an XG
includes the r.e. languages, and hence that recognition is not decidable. First, I show
that XL is closed under homomorphism. I then show how the bracketing mechanism
of XG derivations can be used to mimic a context-free derivation. Finally, I construct
a bilinear XG that will recognize the intersection of two context-free languages. I will
use the bracket-free XG derivation of definition 6-2.

6-4 proposition. The languages recognized by XG are closed under homomor-
phism.

Proof. Analogous to the one for context-free grammars [HU79]; replace terminals a
in the XG rules by their images h�a�. �

I now begin the construction that mimics the nonterminal rules of a context-free
grammar in Chomsky normal form (see theorem 1-14) using ellipsis rules.

6-5 deÆnition. Let G � �N� T� S�P� be a context-free grammar in CNF, that is, its
productions are of the form S � �, A � a or A � BC. Then define the set of
XG productions PX as follows: for every rule A � BC in P let PX contain the rule
B � � �C � A.

6-6 deÆnition: sound labeling. Let G be a context-free grammar. A G-SOUND

LABELING is a sequence A1w1A2w2 � � �Anwn such that for each 1 	 i 	 n, Ai � wi.

6-7 lemma. Let � be a G-sound labeling, R � PX and �
R
� �. Then � is a G-sound

labeling.

Proof. Let R be B � � �C � A; the general case is � � �BuCv�, and � � �Auv�,
where � and � are G-sound labelings, so � is either empty or begins in a nonterminal.
Because � is a G-sound labeling, B � u and C � v. So A � uv, and � is a G-sound
labeling. �

6-8 deÆnition. Let G be a context-free grammar. A G-SOUND TERMINAL LABELING

of a string w � a1a2 � � � an is a labeling A1a1A2a2 � � �Anan such that for each 1 	 i 	 n,
P contains the production Ai � ai.
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6-9 proposition. Write �
P

�� � to denote that � can be rewritten to �’ in zero
or more steps using productions in P only. Let G be a context-free grammar and
w � a1a2 � � � an a terminal string. Then A � w if and only if there is a G-sound

terminal labeling � of w such that �
PX�� Aw.

Proof. The if part follows from the lemma. Only if is proved by induction on the
depth of the context free derivation tree; let R be the rule applied in its top node;

Terminal case R � A � a. Obvious: Aa
PX�� Aa.

Nonterminal case R � A � BC. If A � w then there are u and v such that w � uv,
B � u and C � v. By i.h. there are terminal G-sound labelings � and � such

that �
PX�� Bu and �

PX�� Cv. Since PX contains the production B � � �C � A,

this means that ��
PX�� BuCv

PX�� Auv. �

6-10 proposition. Let L1 and L2 be context-free languages. Then there is an XG X
such that L�X� � L1 � L2.

Proof. Let L1 and L2 be recognized by the CNF context-free grammars G1 �
�N1� T� S1�P1� and G2 � �N2� T� S2�P2�, respectively, and assume w.l.o.g. that
N1�N2 � �. Then construct an extraposition grammar X � �N1�N2�fΣ�Φg� T�Σ�P�
as follows:

1. P contains Σ� � if the empty string is in both L1 and L2.
2. P contains the rule Σ� ΦS1.
3. P includes the nonterminal rules of G1.
4. If P1 contains A � a and P2 contains B � a, then P contains the rule A � Ba.
5. P includes PX�G2�.
6. P contains the rule Φ � � � S2 � �.

Let d be any X-derivation of w. Then it is easy to see that there is a derivation d � of w
that applies the rules of type 1 first, then rules of type 2, and so forth.

Let w � a1a2 � � � an be nonempty. If d is a derivation of w, then d � starts in the
derivation S � ΦS1

�
�� ΦB1a1B2a2 � � �Bnan of a terminal G2-sound labeling using

only rules of type 2, 3 and 4. From this initial segment of d � one immediately has a
G1-derivation of w. Because d � will end in an application of rule 6, one must have

B1a1B2a2 � � �Bnan
PX�� S2w, which by proposition 6-9 is equivalent to saying that G2

derives w.

The reverse implication is now obvious. �

6-11 corollary. The class XL of languages recognized by an extraposition grammar
includes all recursively enumerable languages.

Proof. It has now been proved that XL is closed under homomorphism and contains
the class fL1 � L2 j L1 and L2 context-freeg; it is a standard result (see e.g. [Gin75] p.
125) that any such class includes all r.e. languages. �



6.2. Bounded and loose XG recognition 123

6.2 Bounded and loose XG recognition

To obtain the promised tractability results for classes of extraposition grammars, I will
again develop an alternative, equivalent way of looking at XG derivation; now in terms
of a context-free grammar that generates bracketed strings.

6-12 deÆnition: corresponding CFG. Let G � �N� T� S�P1 � P2� be an extrapo-
sition grammar, where P1 contains context-free rules only, and P2 contains only ellipsis
rules. Then the CORRESPONDING CONTEXT-FREE GRAMMAR CF�G� is the context free
grammar �N� T � f �B� B	 j B � N g� S�P1 � P3� where for every rule A � � �B � �
in P1, include in P3 the two rules

(i) A � � �B

(ii) B � B	�

6-13 proposition. Let G be an extraposition grammar. Define the rewriting opera-
tion� over bracketed terminal strings as follows: for every B � N,

u�B v B	w � uvw

(where v contains no brackets).

Then G derives a string w iff CF�G� derives a w such that w
�
� w.

Proof. The definition of � is merely a formal characterization of the idea that G
derives w if and only if CF�G� derives a balanced bracketing of w.

Clearly, if there is a G-derivation of w, then there is also a CF�G�-derivation
of a balanced bracketing w (the bracketing is identical to that in the XG derivation
according to definition 2-1).

As to the converse, if there is a derivation of a balanced bracketing w in CF�G�,
then it must be shown that the context-free derivation can be transformed such that for
each pair of matching brackets, the rules R1 : A � � �B and R2 : B � B	 applied
to produce these brackets, follow each other immediately. This then corresponds to
applying the single XG rule A � � �B � �.

It is straightforward to see that this can indeed be done. Order the bracket pairs
rightmost–innermost, which is to say the opening brackets are ordered from right to
left. Repeatedly take the next pair from this list, and write out the least number of
rules needed to introduce the brackets. It must be shown that to do this, no other new
brackets need to be introduced. This cannot be because of a rule of type (ii), because
it has no nonterminals on its RHS, so its application can be postponed as long as we
want. Rules of type (i) cannot be needed either, because applying one would introduce
another opening bracket right of the opening bracket we want to introduce. But in a
rightmost–innermost rewriting strategy, that bracket must have already been treated.

�
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...dat Frank Julia koffie   < < < >   zag > drinken >

VR

VT

NC

Ntrace

Ntrace

V0

Csub

NC

N0 Ntrace VI

VI

V0NCN0

NCN0

3

Figure 6.1: Derivation in the corresponding context-free grammar.

6-14 example. In the example grammar for Dutch from section 2.1, there is only one
ellipsis rule; therefore only one bracket symbol will be required. Rule [5] is replaced
with

[5] NC � N0 NC �

and the following rule is added:

[5’] Ntrace � 	

The context-free derivation corresponding to the derivation in figure 2.4 is shown in
figure 6.1.

*

Given this context-free model, it is considerably easier to design a simple recognition
algorithm that is similar to known algorithms for context-free grammars and tuple-
based extensions as illustrated in the previous chapters. The idea is straightforward:
augment a left-recursion-proof memoing recursive descent algorithm for context-free
grammars with a mechanism that ensures that the derived strings have a balanced
bracketing. Note that it should be able to perform this task taking as its input the
original string w, and not its bracketed version w.

For the simple case that there is only one ellipsis rule, this can be done by counting
the number of unmatched brackets for each recognized constituent. This case includes
the grammar for Dutch subordinate clauses.

Because this section is interested primarily in computational complexity, I will give
translations to LFP calculi rather than concrete algorithms. The step to such concrete
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algorithms is analogous to the step made for the examples in the previous chapters.
To obtain grammars with favourable recognition properties, the following restriction
must be made:

6-15 deÆnition. Let G � �N� T� S�P� be an arbitrary extraposition grammar; G is
linear bounded (under the loose interpretation) if for any bracketing w of a string w,
when S � w (under the loose interpretation) then the number of bracket pairs in w is
not greater than the length of w.

*

Instead of checking the linear boundedness property of a grammar, one will usually
check some sort of overt extraposition property which says that applying an ellipsis
rule A � � �B � C necessarily immediately introduces one or more terminal symbols;
i.e. fillers cannot be empty. Equivalent properties in the literature often also follow
from lexicalization.

6-16 proposition. If an extraposition grammar G has only one ellipsis rule and is
linear-bounded, then there is an algorithm that decides G-membership for a given
string of length n in O�n7� time.

Proof. Let the input string be w � a0a1 � � � an�1. Translate the grammar G to a
recursive iLFP scheme ΦG using the rules in figure 6.2.1

Intuitively, it is straightforward to check that a formulaA�i� j� l� r� is true whenever
A recognizes a bracketing v of v � ai � � � aj�1, where l is the number of unmatched
closing brackets in v, and r is the number of unmatched opening brackets. Now the
context-free grammar derives a balanced bracketing of a string w � a0a1 � � � an�1 if
and only if the formula � � �ΦG� S�0� n� 0� 0� is true under the assignment �0�w�.

The only perhaps non-straightforward clause is that for A � BC; the two disjuncts
correspond to the two situations (6.1) and (6.2).

B
		��z�

l1

����z�
r1

C
		 	� �z �

l2

����z�
r2

�� A
			� �z �

l1 � l2 � r1

����z�
r2

(6.1)

B
		��z�

l1

� ��� �z �
r1

C
		��z�

l2

����z�
r2

�� A
		��z�

l1

���� �z �
r2 � r1 � l2

(6.2)

In checking intuitively that the formula must be true, I overlooked that the iLFP
semantics of the arithmetical operations is modulo n arithmetic. Therefore this only
holds if it is known in advance that the number of unmatched brackets on either side
will never exceed n. This prerequisite is satisfied by the linear-boundedness property.

Finally, the scheme’s largest rule contains 9 variables, so a naı̈ve implementation
of the iLFP scheme would give an O�n9� algorithm. However, careful study of the

1This scheme contains proper terms within atomic predicates, and the operators � and �. These can be
translated to bare iLFP by adding clauses with at most 3 variables.
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CFG rule enhanced iLFP clause

A � a A�i� j� 0� 0� � a�i� j�

A � � A�i� i� 0� 0� � true

B � 	 B�i� i� 1� 0� � true

A � BC A�i� k� l3� r3� � �j� l1� l2� r1� r2�
B�i� j� l1� r1� � C�j� k� l2� r2� �
��r1 	 l2 � l3 � l1 � l2 � r1 � r3 � r2� �
�r1 	 l2 � l3 � l1 � r3 � r2 � r1 � l2��

A � C � A�i� j� l� r � 1� � C�i� j� l� r�

Figure 6.2: Translation scheme for XG with one ellipsis rule.

rule shows that in each of the inner disjuncts, two variables are fixed given the other
seven. �

It is now straightforward to make similar constructions for the general case and for the
loose semantics.

6-17 proposition. If G is an arbitrary linear-bounded XG, then membership for G
can be decided in deterministic exponential time in terms of the length of the input.

Proof. (sketch) Instead of iLFP, use cLFP, and instead of keeping track of the
number of brackets, look at arbitrary sequences of different brackets. Because of
linear-boundedness, the length of the sequences is bounded by the length of the input.

�

The loose semantics of definition 2-6 can be given a corresponding CFG equivalent
along the same lines as in proposition 6-13. In this case, counting brackets is sufficient
again, because brackets need to be matched only if they have the same label.

6-18 proposition. Let G be an extraposition grammar. Define the rewriting oper-
ation �� over bracketed terminal strings as follows: for every B � N, if v does not
contain any B-brackets �B and B	, then

u �B v B	 w �� u v w

Then G loosely derives a string w iff CF�G� derives a w such that w
�
�� w.

Proof. Entirely analogous to 6-13. �

The calculus of figure 6.2 can now be extended by introducing a pair of arguments
l� r for each of the different annotated bracket pairs �B and B	; it will ensure that the
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derived bracketed string is balanced only w.r.t. each individual pair of brackets. The
complexity of the resulting algorithm becomes O�n3�4m� where m is the number of
bracket pairs.

6-19 proposition. If G is an arbitrary linear-bounded XG under loose derivation,
then membership for G under loose derivation can be decided in deterministic poly-
nomial time in terms of the length of the input.

*

Finally, the iLFP translation can be extended by specifying the deduction rule for the
island production in figure 6.3, which requires that the numbers of unmatched opening
and closing brackets in C are both zero; the example assumes 1 ellipsis rule as in figure
6.2, but can be extended to take arguments for each bracket label.

Island rule iLFP clause

A�B�� C A�i� j� 0� 0� � C�i� j� 0� 0�

Figure 6.3: Translation for the island rule.
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Conclusions to chapter 6

This chapter concludes the presentation of XG started in chapter 2. No results were
previously known on the computational properties of XG, and all material in this
chapter is original.

Not discussed is how a concrete predicate descent algorithm can be constructed for
XG under loose derivation. Although this is rather straightforward, and the complexity
heuristics is preserved, such an algorithm allows practical implementations less directly
than an algorithm for LMG. The most important reason is that the ‘bracket’ arguments
to items must be guessed. In chapter 7, the cost of such guessing is cut down by trying
only a limited selection of items based on properties of the grammar. It is unclear
how this should be done for XG in a top-down parsing technique. It is not unlikely
that a GLR-based algorithm could be constructed that takes account of numbers of
unmatched brackets more efficiently.

Still left to investigate are the precise formal power of XG under the bounded and
loose semantics, and its closure and pumping properties. Both loose and bounded XL
are clearly closed under homomorphism, so they will not correspond to PTIME and
EXPTIME like classes of LMG. Since brackets are eliminated pairwise, some form
of linearity is present that resembles the linearity in tuple grammars, which points
more in the direction of pumpability. The brackets also indicate a connection to DYCK

LANGUAGES (see e.g. [VSWJ87]), which may well provide an answer to this question.

Some of the intuitions given by XG’s derivation graphs, and the computational
consequences of using the different constructions investigated in chapter 2 will be used
in chapter 10. XG will also come back in chapter 8 when scrambling in German is
discussed.



Chapter 7
Trees and attributes, terms and forests

Until this point, the discussion has been in a very formal setting, and has concentrated
on abstract properties of very mathematically oriented formalisms. This chapter is a
pivot, in the sense that all following chapters will be of a more linguistic, descriptive
nature. Because computational tractability is one of the desiderata of the Prologue
and chapter 1, it first needs to be investigated if and how the formal tractability of the
formalisms discussed so far survives when these formalisms are applied in real-world
descriptive linguistic systems.

This chapter will be brief and casual, but knowledge of the subjects addressed here
is necessary to understand the motivation of various choices made in the descriptive-
linguistic part III of this thesis. I will split up the question of tractability in practice
into two parts, one of which is twofold;

1. Can the recognition and parsing solutions proposed in the previous chapters be
used in applications that can perform realistic tasks on medium-size modern
computer systems?

2a. How can linguistic analysis be extended from a purely structural nature, to include
morphological, and perhaps semi-semantic features?

2b. Do the phases 1 and 2a yield structures based on which any remaining (semantic)
analysis can be carried out efficiently? In particular, if tractability implies
pushing non-local ambiguity to further stages of processing, will those further
stages not suffer an equivalent amount of problems?

In the first section of this chapter, I briefly introduce various methods of describing
trees, sets of trees (forests), attributes, and combinations of those, used in various
approaches to descriptive and computational linguistics; some examples are included
of what types of attributes are frequently used. In section 7.2 I briefly discuss the
predicate-descent based prototype LMG parser that I built in 1996, and discuss
some of its performance properties. The next section looks at the parsing prob-
lem from the broader perspective of an elaboration on the notion of ambiguity and
OFF-LINE PARSABILITY, including an elaboration on possible improvements using effi-
cient context-free parsing techniques such as GLR [Rek92] [Tom86] to reduce on the
excessive memory consumption of a straightforwardly implemented predicate-descent
algorithm. This multi-stage approach appears again in the next section, 7.4, where
methods of attribute evaluation over the ambiguous parse forests produced by a parser
are discussed.

129
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7.1 Annotated grammars

As there are different methods for the description of underlying structure, there is
a number of different approaches to describing attributes over a structural backbone.
Such attributes can be morphological properties of words and phrases, such as number,
person and case; they can be selectional properties such as the property of being
animate required by verbs such as to walk, or representations of the meaning of a word
or phrase.

I will now briefly sketch two of the most common ways of describing linguistic
structures with attributes; on a limited scale, I will start bringing in the influence
of the desiderata of the Prologue, most notably computational tractability (E), full
localization (F) and separation of structure and finite attributes (C).

Trees, terms and forests

Most of the work on computationally efficient treatment of attributes in the literature
assumes either a realm of feature structures (discussed further below) or is based on a
projective formalism, i.e., defines attributes over the trees of a context-free grammar.

In this thesis, I have looked at two extensions of CFG. Extraposition grammar has
a derivational structure that cannot be straightforwardly transformed to one that looks
like the trees produced by a CFG under their derivational semantics; therefore I will
not take XG into consideration in this chapter.

Context free grammar and the tuple-based formalisms in chapter 3 on the other
hand have similar derivation structures. These structures have so far only informally
been associated with the derivational interpretations 1-8, 3-3 and 3-19, and indeed,
this association is fairly trivial. The important points to stress are

1. A single proof that a grammar derives a string can be uniquely represented by a
tree whose nodes are bearing a LABEL that identifies a grammar rule, or partially
identified by a label just referring to a nonterminal or terminal symbol.

2. A string is thus associated with a set of trees, that is empty if the string is not
recognized by the grammar, and otherwise contains one tree for each derivation
of the string.

An abstract way of looking at such labelled trees is to think of them as TERMS, and of
the labels as functions that construct terms from smaller terms.

7-1 deÆnition: free terms. Let F be a set of FUNCTIONS. Then the set T�F� of
FREE TERMS OVER F is a set of syntactic forms, satisfying:

1. Every element of F is in T�F�;

2. If f � F and t1� � � � � tn � T�F� then f�t1� � � � � tn� � T�F�.
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*

The simple grammar in figure 7.1 will be used frequently in this chapter to illustrate
attributed trees. The derivation tree of the man walks can be represented uniquely in a

�r1� V0 � N0 VI

�r2� V0 � V0 and V0

�r3� VI � walks fthird person singularg
�r4� VI � walk ffirst or second person singularg
�r5� VI � walk fpluralg

�r6� N0 � you fsecond person singularg
�r7� N0 � the man fthird person singularg
�r8� N0 � the men fthird person pluralg

Figure 7.1: Labelled CFG with informal annotations

term syntax as V0�N0�the man��VI�walks��. Since there are two rules generating
men as a noun phrase however, the sentence the men walk has two derivations, which
both have the tree V0�N0�the men��VI�walk��, but differ in the more precise term
syntax with rule identifiers as labels: r1�r8� r4� and r1�r8� r5�. When a word or string
occurs twice in a sentence, it is typically fruitful to distinguish between the two
occurrences. Therefore, more complex representations may also include sentence
indices.

In chapter 4, a parser was defined to be a machine that, given a string, outputs
all structural analyses of that sentence according to a given grammar. For grammar
formalisms that output trees, a representation of all derivation trees is called a forest.
I will use the following definitions:

A A

A A

A

A

. . .

. . .

. . .

. . .

. . .

. . .

SP

Figure 7.2: Packing and sharing.

7-2 deÆnition: forests. A FOREST is a set of trees. A PACKED FOREST is an econom-
ical representation of such a set which makes use of PACKING NODES that can attach two



132 Trees and attributes, terms and forests

or more subderivations to one parent node. A SHARED FOREST is a representation that
can attach one subderivation to two or more parent nodes. This is shown schematically
in figure 7.2.

A representation of a forests is called MAXIMALLY PACKED or MAXIMALLY SHARED

if it has no equivalent representation with a larger number of packing and sharing
nodes, respectively.

the men

walk

N0

V I

V 0

V I(sg) (pl)

P

S

VI

Figure 7.3: An example of a packed and shared forest representation.

*

Packed forests can be represented in a term syntax by adding a function pack to repre-
sent packing nodes; the two derivations of the sentence men walk can be represented
economically as

r1�r8� pack�r4� r5��(7.1)

Only one of the terms in this forest representation corresponds intuitively to a correct
sentence—one of the analyses used rule r4 to produce walk, which disagrees with the
3rd person plural of men. This will be formalized below.

A similar, but significantly more involved approach with abstraction over variables
in a sort of let construction can be applied to model sharing in a term syntax—I will
not explain it here because it will not be needed in this thesis. Some concrete systems
manipulating terms, such as EPIC [WK96], have sharing built in explicitly, i.e. at a
meta level.

One typically looks at forests that are maximally shared w.r.t. a representation
including sentence indices, that is: identical substrings occurring at different places in
the represented sentence are not to be shared. Cf. the following sentence, where two
occurrences of the same word walk will get different annotations.

You walk and the men walk(7.2)
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Annotated tuple grammars

Terms do not only serve well as a way of talking about derivation trees independently
of the grammar formalism or parser that is used to produce them—they are also used to
represent, possibly complex, attributes over the syntactic constructions of a language.

I will use the notion of a term in this section to capture two different styles of
annotating grammar, feature structures and grammars over finite lattices, in a single
framework. To do this smoothly, a method is required of distinguishing meaningful
terms from terms that will not be used.

7-3 deÆnition. Let S be a set of basic types of SORTS. Then the set T �S� of
FUNCTIONAL TYPES OVER S is the smallest set containing

1. Each sort A � S; that is S � T �S�;

2. The type � � �1 
 � � � 
 �n � � where n � 0 is the ARITY of � , and �,
�1� � � � � �n � T �S�.

Let F be a set of functions and � : F � 2T �S� be a function assigning a set of types to
each function in F, each of the same arity. Then the set T�F� of TYPED TERMS OVER

S and the function � : T �S� are constructed inductively as follows:

1. If a function f has arity 0, then ��f� contains only basic types � � S. Then
f � T�F� is called a CONSTANT.

2. If t1� � � � � tn � T �S� and

��t1�
 � � � 
 ��tn� � � � ��f��

then the term

t � f�t1� � � � � tn�

is in T�F�, and � � ��t�.

Let � � T �S� be a type; then T��� is the set of terms t in T�F� that have the type � ,
that is � � ��t�.

A set of typed terms is called a FIRST ORDER SIGNATURE if � is a function, that is
��f� is a singleton for each f � F.

*

Both ways of constructing terms corresponding to single derivation trees of a CFG or
LMG discussed above form a first order signature if the nonterminals of the grammar
are taken as the set of basic types. If sets of terms are represented using the functions
pack and share, these functions are polymorphic, i.e. they must be assigned more
than one type; pack for example has the type �A�A� � A for every basic type, or
nonterminal, A.
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7-4 deÆnition. An ANNOTATED LMG is a tuple �G�F�S� �� ��C� whose first compo-
nent G � �N� T�V� S�P� is an LMG, S is a set of basic sorts, � : N � S assigns a basic
type to each nonterminal of the grammar, and the operator C assigns a CONSTRAINT

to each of the clauses, or productions, of the grammar: if P contains a clause R of the
form

A�� � �� :- B1�� � ��� � � � �Bm�� � ���

then

C�R� � T���A��
 T���B1��
 � � � 
 T���Bm���

7-5 deÆnition. An annotated LMG �G�F�S� �� ��C� is said to RECOGNIZE a string
w if w is in the language recognized by G, and there is at least one derivation d of w
and a way of associating each node in d with a term t such that for each node, the tuple
consisting of the term t and the terms t1� � � � � tm associated to the daughter nodes are
in the constraint relation C�R� where R is the rule applied at the node.

Grammars over a Ænite lattice

I will assume for now, and will substantiate in part III, that on the basis of a method
like the LMG system it will indeed be possible to provide sufficiently general lin-
guistic descriptions with a bounded dependency domain (definition 1-12 on page 23).
While some attributes of syntactic structures such as anaphoric linking and semantic
interpretations seem to need a recursive, hence infinite domain, it seems possible—
without claiming that this would be trivial—for a first phase of syntactic processing1

to maintain, at each node in the derivation, only a bounded set of attributes ranging
over boundedly many values.

Such grammars are captured in the following definition of a tuple grammar over
a finite lattice (TGFL), which is the LMG equivalent of the ATTRIBUTE GRAMMARS

OVER FINITE LATTICES (AGFL) developed at the university of Nijmegen as part of
the GRAMMAR WORKBENCH [Kos91] [NK92].2 Each node in a TGFL derivation is
associated with a finite number of AFFIX VALUES ranging over finitely many values;
this is formalized in the following definition.

7-6 deÆnition. A TUPLE GRAMMAR OVER A FINITE LATTICE is an annotated LMG
�G�F�S� �� ��C� where G � �N� T�V� S�P� and

1Glossing over languages with a complex morphological structure, the analysis of which will be left to a
syntactic pre-processing stage—I assume a finite dictionary given at the beginning of a sentence processing
stage, perhaps generated by such a pre-processing phase for that sentence only.

2A study on the complexity of a formalism similar to AGFL, called AGREEMENT GRAMMAR, is found
in [BBR87]—but is subject to the same objections as I raised in chapter 3. It is claimed that the universal
recognition problem for agreement grammars is NP-complete, hence the best possible algorithm is probably
exponential—in the size of the attribute domains. As in the other constructions in the book, the grammar
and input in the NP-completeness proof are not taken to be independent.
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D � fDperson�Dnumberg
Dperson � f1� 2� 3g

Dnumber � fsg�plg
��V0� � EMPTY

fV0 � e : EMPTY
��VI� � ��N0� � VAGR

fVI � fN0 � vagr : �Dperson 
Dnumber� � VAGR

�r1� V0 � N0 : vagr�p� n�� VI : vagr�p� n�
�r2� V0 � V0 and V0

�r3� VI : vagr�3�sg� � walks
�r4� VI : vagr�1j2�sg� � walk
�r5� VI : vagr�1j2j3�pl� � walk

�r6� N0 : vagr�2�sg� � you
�r7� N0 : vagr�3�sg� � the man
�r8� N0 : vagr�3�pl� � the men

Figure 7.4: AGFL for agreement in simple English sentences

1. S contains, in addition to a type ��A� for each nonterminal A � N (these need
not be different for two different nonterminals), a finite number of additional
types called AFFIX DOMAINS. Let D be the set of affix domains.

2. For each nonterminal A � N, the set of functions F contains a TUPLE CONSTRUC-
TOR fA of type

��fA� � D1 
 � � � 
Dn � ��A�

where D1� � � � �Dn � D are affix domains and n � 0.

3. There are finitely many other functions in F; these are called AFFIX VALUES, are
constant and have a type d � D � D.

A constraint C�R� is allowed, for each subterm of the terms associated with the daughter
nodes and the parent node, to

1. equate it to another subterm; and/or

2. restrict its value to a set of affix values.

*
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An example of a TGFL is the formal equivalent of the annotated CFG on page 131
in figure 7.4. Since its backbone grammar is a CFG, it is actually a notational variant
of an AGFL. Grammars over finite lattices can be straightforwardly extended to allow
more complex terms, but keeping the set of types free of cycles, so that a node in a
derivation can be associated with only a finite number of possible terms. An example
where this is useful is to describe subcategorization: every verb has morphological
properties verb form, number and person, and in the lexical information associated
with a verb like to want such information appears twice: once for the verb itself,
and once for its complement, which necessarily appears with infinitive morphology.
This is a bounded-domain version of the well-known feature structures, which will be
discussed after the following remark.

7-7 remark: coding. A key property of finitely annotated grammars, in a formal
setting, is that they can be expanded to an equivalent grammar without attributes.
This is done by first encoding the nonterminals in the associated terms, resulting in
a grammar with has jNj � 1. Then, a new grammar is constructed whose set of
nonterminals is N� � T�F�S�. The productions P of this grammar are those that
satisfy the constraints of the original, annotated grammar. This is called GRAMMAR

CODING.

From a more practical point of view, it has been argued that such a construction is
not very valuable, because the resulting grammar has a size proportional at least to the
third power of the size of the attribute domain T�F�, which is prohibitive in practice.
Moreover, extracting an annotated parse forest according to the original grammar is
nontrivial.

In other words, for the purpose of this chapter, formal complexity reasoning does
not provide enough detail.

Feature structures

A popular method of associating linguistic structure with attributes is the use of
FEATURE STRUCTURES and UNIFICATION. Feature formalisms are so powerful, that it is
theoretically possible to simulate any grammar by a feature grammar over a backbone
that has only one nonterminal. This is essentially done in HPSG. I will instead
concentrate on feature formalisms that are constructed on top of a tuple grammar,
typically a CFG. This grammar is called the STRUCTURAL BACKBONE of the feature
grammar.

Feature structures are obtained by relaxing the definitions for TGFL to allow more
arbitrary types.

7-8 deÆnition. A FEATURE GRAMMAR is as a TGFL, but with the following modifi-
cations

1. The elements of D are called FEATURE DOMAINS.
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2. For each basic type � � S, the set of functions F contains finitely many constants
c : � , and at most one non-constant function f� of type

��f� � � D1 
 � � � 
Dn � �

where D1� � � � �Dn are feature domains and n � 1.

*

The essential difference between this more general definition and a TGFL is that it
allows structures of arbitrary depth. A grammatical phenomenon that can be argued to
need arbitrarily deep structures is selection or subcategorization. Although the number
of complements selected by known verbs is limited to 4, including the subject, it can
be argued that a language that has verbs selecting for more complements must not a
priori be excluded.

Feature structures are traditionally displayed as matrices in which the “tuple con-
structors” are represented as square brackets, and the arguments of these constructors
are labelled—these labels are indices to the argument positions of the constructor func-
tions. An example of a verb with a long subcategorization list is to trade something to
someone for something.

trades �

�
�����������������������������

cat: verb

head:

�
�����������

form: finite
tense: present

agr: 1

�
person: 3
number: sg

�

subject:

�
���

cat: np
animate: true

head:

�
agr: 1

case: nom

�
�
���

�
�����������

subcat:

�
�����������

first:

�
� cat: np

animate: false
head: �case: acc�

�
�

rest:

�
�����
first:

�
cat: pp
prep: to

�

rest:

�
� first:

�
cat: pp
prep: for

�
rest: nil

�
�

�
�����

�
�����������

�
�����������������������������

(7.3)

Although I will argue below that in the context of this thesis, it is a rather obvious
choice to prefer finite attribute grammars over feature structures, feature structures are
discussed briefly here for two important reasons: (i) the typical way of describing long-
distance dependencies (w.r.t. the surface order) in feature-driven formalisms needs
to be compared with the methods proposed in this thesis and (ii) feature grammars
offer methods that enable a form of LEXICALIZATION that cannot be applied trivially
without the full capacity of the structure sharing and unification present in feature
feature-based systems.
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7-9 example: slash features. Whereas the formalisms in part I of this thesis aim at
modelling long-distance dependencies by relocating substrings of a generated sentence,
feature grammars make use of their recursive nature to keep track of entire structural
representations. Whenever a phrase appears in a ‘dislocated’ position, its entire feature
structure is passed through the structures of its context through feature sharing, until
it meets its deep-structural position. Like with subcategorization, it is furthermore
often assumed that any number of phrases can be simultaneously extraposed from a
given constituent.3 So every constituent bears a SLASH feature, which is typically a
list of complete feature structures associated with extraposed subconstituents. Such
a list makes the feature domain of a grammar strictly unbounded, and this has its
consequences for computational tractability.

For simplicity however, let’s assume that each constituent has a SLASH feature
that stores the feature structure corresponding to one single extraposed constituent.
Consider the topicalized sentence

Whomi did John see �i?(7.4)

The accusative form whom is used to stress that there are morphological properties
which must be carried over the long-distance link between the topic and the verb see
that selects for it. Since these may in principle be any property, a feature grammar
stores all information about the phrase whom in the SLASH feature.

The rules responsible for head-complement selection can be reduced to a low
number, since the lexical entries contain so much information. Such rules will ensure
that only one of the daughter phrases has a nonempty SLASH feature, and if one daughter
phrase has such a feature, will structure-share it with the SLASH feature of the parent.
An example is the rule that generates the standard left-right head-complement structure
of English:

XP

�
� head: 1

subcat: 2

slash: 3

�
� � X

�
���

head: 1

subcat:

�
first: 4

rest: 2

�
slash: nil

�
��� NP 4

�
slash: 3

�
(7.5)

And an alternative version of the same rule ‘consumes’ the SLASH feature and produces
an empty complement, i.e., a trace:

XP

�
� head: 1

subcat: 2

slash: 3

�
� � X

�
���

head: 1

subcat:

�
first: 3

rest: 2

�
slash: nil

�
���(7.6)

Finally, there is a rule which produces an NP filler at S level:

S
�

slash: nil
�
� NP 1 [ ] S

�
slash: 1

�
(7.7)

3It is dubious whether this is really the case—see section 9.4.
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7-10 example: lexical sharing. In feature grammars, structure sharing, or identi-
fication of subterms, in lexical items can associate values of other grammatical entities.
An example is the following lexical entry of the verb to be:

is �

�
�����������������������

cat: verb

head:

�
�����������

form: finite
tense: present

agr: 1

�
person: 3
number: sg

�

subject:

�
���

cat: np

head:

�
� gender: 2

agr: 1

case: nom

�
�
�
���

�
�����������

subcat:

�
����� first:

�
���

cat: np

head:

�
� gender: 2

agr: 1

case: acc

�
�
�
���

rest: nil

�
�����

�
�����������������������

(7.8)

In French, a verb like is requires the subject and the complement to show agreement
on both number and gender. Even though no GENDER feature is explicitly present in
the lexical entry for is, the co-indexing of the AGR feature on the subject and first
complement will enforce this agreement.

*

Practical introductions to feature grammars are [Shi86] and [Sel85]; an example of a
full-fledged theory is [PS94], and a formalization is found in [Rou97].

Discussion

Since grammars overfinite lattices can be extended straightforwardly to grammars over
more complex, but still bounded, term structures, the essential difference between such
finite grammars and feature formalisms is the interaction of structure sharing with the
ability to attach to each node in a derivation an unboundedly deep, recursive structure.
One of the conjectures of the Prologue is that when the structural backbone has a
sufficient capacity, such an unbounded attribute domain is not necessary. This claim,
and the conjecture that simple LMG is sufficient in this sense, are worked out in part
III of this thesis.

Feature grammars describe, in their general form, any recursively enumerable
language, even if all but one nonterminal of the underlying grammar generate the
empty string. A special class of feature grammars, called OFF-LINE PARSABLE, is
defined by PEREIRA and WARREN in [PW83]: these are feature grammars on a context-
free backbone whose underlying CFG analyses are free of cycles, or in other words, is
not infinitely ambiguous. This eliminates arbitrary calculations which produce no overt
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syntax, and recognition for these types of grammars indeed turns out to be decidable.
However, they still require exponential time for parsing and recognition. Using a more
complex backbone, such as an MCFG or simple LMG, yields a new, larger class
of off-line parsable grammars and can hence extend the scope of decidable feature
grammars. The step to eliminating unboundedly deep feature structures completely is
then only an inch away.

It should be noted that AGFL as they occur in the literature are, as they are
based on a CFG with only a finite domain of space for additional administration,
intrinsically incapable of describing heavily non-projective phenomena such as cross-
serial dependencies in Dutch. In some cases, this is arguably not a problem—see
the discussion in section 9.4. However, unless the structural backbone underlying a
finite-attribute grammar is increased to the strength of at least linear MCFG, the scope
of such grammars is highly limited—contrary to what some papers, on AGFL, such
as [Kos91], are claiming. Nonetheless the work done in evaluating AGFL attributes
seems to be very valuable in the context of the highly localized formalisms studied in
this thesis.
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7.2 A prototype of an S-LMG parser

In the remaining sections of this chapter, I will discuss concrete approaches to parsing,
translation and evaluation of attributes. This first section presents a prototype imple-
mentation of an LMG parser attached to the term rewriting system EPIC [WK96]. The
next sections discuss possible improvements that may make such a system applicable
to more realistic, large-scale applications.

Short description

In 1996–97, I implemented the predicate descent algorithm for LMG as discussed in
chapters 4 and 5 in a prototype parser package written in C and Yacc/Lex, that has the
following features


 The parser package takes a grammar file and a sentence as its input, i.e. it is not
a parser generator but rather implements a universal parser.

The grammar file is in LMG predicate notation or CFG-style productions, and
is allowed to contain attribute and translation specifications in the format of
equations in the equational programming language EPIC.


 The grammar is a simple LMG with the extension that multiple occurrence of
a variable on the LHS is allowed (i.e., a PMCFG with reduplication can be
specified in its canonical form).


 There is no separate lexical phase—the terminal symbols of the grammar are the
256 ASCII codes. White space occurrence can be controlled on a rule-by-rule
basis.


 Output is by default a term in EPIC syntax representing all analyses of the
sentence; this is an elementary term format where functions begin in a lower
case letter and variables (which do not occur in concrete terms) in capital letters,
as in the Prolog conventions.


 Options allow

� Reducing a production-style grammar (covering standard CFG notation)
to LMG predicate notation.

� Output in tree form rather than EPIC term.

� Compiling the grammar into a signature for the generated EPIC terms plus
equations (these are copied literally).

� Unparsing or pretty-printing: input is a term representing a single tree and
output is the full sentence according to the grammar.

Below, I will briefly discuss some of these features along the lines of a simple example:
a toy translator for simple Dutch sentences into Spanish.
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Syntax of LMG grammars and rewriting-based translation

Manipulation of terms, in the form of TERM REWRITING, is a technique that is often
used in software engineering circles to model the semantics of programming language
constructions. Whereas translation is a far away target in Linguistics, it is every day
practice in Computer Science, and the formal study of such translation mechanisms
or compilers often concentrates on source and target languages as sets of terms and
the compiler as a program that transforms terms of one language into terms of another
language using straightforwardly definable rewriting operations on these terms.

In intermediate stages, generic terms are useful to define auxiliary values that are
not part of either the source or the target language—these correspond to the attributes
one can attach to the structures produced by a context-free grammar or an LMG. Such
use of term syntax is possible in the LMG parser prototype but not discussed here.

The grammar files fed to the LMG prototype consist of four SECTIONS: start
symbol, types, syntax and equations—similar divisions can be found in
equational specification systems such as ASF+SDF [Kli93] and EPIC [WK96].

start symbol defines the start nonterminal of the grammar

types defines functions in the term signature directly; most such functions are derived
automatically from the grammar rules, but some extra-syntactic functions (such
as pack and none which are built-in, but must to be included when referred to
in the equations), translation predicates (trans in the example discussed here)
or attribute functions (no example given) may need to be defined. The function
declarations take the form

function-id: -> type-id

for constants or

function-id: f type-id # g� type-id -> type-id

for proper functions. The type-identifiers are ignored but can be specified to
indicate the intended use of the functions.

syntax this section consists of a sequence of grammar rules, each bearing a label
(if a label is omitted, one is generated from the predicate on the LHS). This
label is the function symbol used when the parser generates a forest in term
representation (see pages 130ff). The underlying term signature is untyped, that
is, only the arity of the function symbols plays a rôle. This is a feature of the
EPIC system, and comes in handy when defining the pack operator used to
generate ambiguous nodes.

The grammar rules can be either in the familiar LMG notation, e.g.,

sn_sub: S("dat" s o v) :- NP(s), VP(o, v).
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or equivalently, in a production format that eliminates the one component of
the LMG predicates by using straightforward concatenation as in a CFG (an
example of such a production-style grammar is given in the Prologue, grammar
(2) on page 8):

sn_sub: S -> NP o VP(o).

The prototype translates rules of the second type to the first. Both these rules
generate the following type declaration:

sn_sub: NP # VP -> S;

Optionally, each grammar rule may be immediately followed by one or more
arbitrary equations.

equations this section contains a sequence of REWRITE RULES over the signature
defined in the types and syntax sections. These are ignored by the parser,
but an option of the prototype is to output an EPIC specification containing the
signature and these equations, which can then be executed on the output of the
parsing stage. In the example discussed below, this feature is used to define a
simple translator. Another possible use is to define simple attributes such as
singular/plural and a function disambiguate which removes incorrect trees
in the forest output by the parser. The equations have the form

term = term

where a term is built up from the function symbols and variables which start
with a capital letter—a good convention is to use the nonterminal symbols
for variables if they correspond a phrase of that type. The rewrite rules are
interpreted by EPIC as licensing a term matching the pattern on the left hand side
of the equation to be rewritten to the term on the right hand side, appropriately
substituting terms for the variables used in the LHS.4

In the space available in this chapter, I cannot go much deeper into terms and term
rewriting, and do justice to the more general algebraic or equational view underly-
ing term rewriting as a software engineering tool. A general textbook on algebraic
specification is [BHK89]. At the level of terms and term rewriting, the explanation
here overlooks the possibility of function typing and the higher order or multi-level
nature of operators such as pack and share—these features are discussed at length in
VISSER’s Ph.D. thesis [Vis97], written in the context of the same project as this book.

Figures 7.5 and 7.6 show an example of a grammar specification that can be read
by the LMG prototype parser. It defines simple syntactic constructions in Dutch

4EPIC does this is done in a rightmost-innermost, most specific equation first, strategy.



144 Trees and attributes, terms and forests

(nonterminals ending in n) and Spanish (nonterminals ending in e). Most of the rules
in the grammar are followed by one or more equations. They construct a function
trans that defines a strictly compositional translation of the terms corresponding to
Dutch phrases to terms corresponding to Spanish phrases.

For example, on parsing the sentence

Jan heeft een auto(7.9)

the parser outputs the term

sn_decl(jan, vpn_tr(heeft, npn(een, auto))).

if the functiontrans is applied to this sentence and fed to EPIC, the following rewrite
sequence takes place:

trans(sn_decl(jan, vpn_tr(heeft, npn(een, auto))))

=> se_decl(trans(jan), trans(vpn_tr(heeft,
npn(een, auto))))

=> se_decl(trans(jan), vpe_tr(trans(heeft),
trans(npn(een, auto))))

=> se_decl(trans(jan), vpe_tr(trans(heeft),
npe(trans(een), trans(auto))))

=> ...

=> se_decl(trans(jan), vpe_tr(tiene, npe(un, coche)))

=> se_decl(jan, vpe_tr(tiene, npe(un, coche)))

The last rewriting step follows the rule trans(X) = X in the equations section
which is triggered because no translation is defined for jan.

There is one exception to this don’t translate default rule—the word geen is not
given a translation rule, but translation is defined in context; the second rule in the rules
section in figure 7.6, covering this case, is called a NON-COMPOSITIONAL translation
rule. It matches not on a single clause, but a combination of syntactic constructions. A
transitive verb applied to a noun phrase whose determiner is geen results in a negated
verb phrase. Hence the translation of sentence (7.10) is

Jan heeft geen auto(7.10)

Jan no tiene un coche(7.11)
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Such a translation rule which depends on a construction stretching over more than a
single parent–daughters group corresponds to the general case of pattern matching,
and is called a polynomial by Huysen [Hui98].

The first equation in the rules section deals with the case that the input sentence is
ambiguous, in a rather naive fashion, by lifting the pack operator over trans. The
interaction of this rule with the noncompositional rule following it is problematic. If the
second argument is headed by pack, the rule is not triggered, and the sentence is left
untranslated. In this very simple case, this last equation for trans could be modified
to also distribute the pack function over trans, but in a larger specification, this
needs to happen for each argument and each rule, which results in a system that is (i)
unmanageable for maintenance by hand and (ii) if generated automatically would result
in a number of rules exponential in the number of nodes in the translated constructions.
A solution to such problems is discussed in section 7.4.

The following steps are needed to use the lmg and EPIC packages to translate with
this specification:

Call the lmg package to compile the specification trans.lmg into an EPIC source
trans.ep containing the signature corresponding to the grammar productions,
and rewriting rules copied from the specification.

Compile the resulting EPIC file to an executable file trans

Call lmg on the Dutch sentence

Feed the resulting term to the EPIC executable trans

Call lmg in unparse mode to convert the resulting term back to the corresponding
Spanish sentence

This procedure is automated using UNIX pipes and make files.
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start symbol Sn

types

pack: _ # _ -> _;
none: -> _;

trans: _ -> _;

syntax

sn_sub: Sn("dat" s o v) :- NPn(s), VPn(o, v).
sn_decl: Sn(s v o) :- NPn(s), VPn(o, v).
sn_ques: Sn(v s o) :- NPn(s), VPn(o, v).

se_sub: Se("que" s v) :- NPe(s), VPe(v).
se_decl: Se(s v) :- NPe(s), VPe(v);

trans(sn_sub(NP, VP)) = se_sub(trans(NP), trans(VP));
trans(sn_decl(NP, VP)) = se_decl(trans(NP), trans(VP));
trans(sn_ques(NP, VP)) = se_decl(trans(NP), trans(VP)).

vpn_tr: VPn(o, v) :- VTn(v), NPn(o).
vpe_tr: VPe(v o) :- VTe(v), NPe(o);

trans(vpn_tr(VT, NP)) = vpe_tr(trans(VT), trans(NP)).

%% negated VP in Spanish (target language) only
%%
vpe_neg: VPe("no" v) :- VPe(v).

npn: NPn(d n) :- DPn(d), CNn(n).
npe: NPe(d n) :- DPe(d), CNe(n);

trans(npn(DP, CN)) = npe(trans(DP), trans(CN)).

Figure 7.5: Toy Dutch to Spanish translator specification (part 1)
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DPn("de").
DPn("een").
DPe("el").
DPe("un");

trans(de) = el;
trans(een) = un.

%% No immediate translation for ‘geen’ and names
%%
DPn("geen").

NPn("Jan").
NPn("Marie").
NPn("Fred").

CNn("auto").
CNe("coche");

trans(auto) = coche.

VTn("heeft").
VTe("tiene");

trans(heeft) = tiene.

rules

%% Lift ‘pack’ over ‘trans’
%%
trans(pack(X, Y)) = pack(trans(X), trans(Y));

%% Non-compositional pattern rule for negated NPs
%%
trans(vpn_tr(VT, npn(geen, CN)))

= vpe_neg(vpe_tr(trans(VT), npe(un, trans(CN))));

%% Default rule is: don’t translate
%%
trans(X) = X;

Figure 7.6: Toy Dutch to Spanish translator specification (part 2)
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7.3 Off-line parsability and multi-stage analysis

It was already mentioned in chapter 5 (page 114) that in practice, storing the items in
arrays indexed by the integer sentence indices would too quickly consume amounts
of memory that are beyond the capacity of any reasonably sized modern computer
system. Therefore, a realistic parser must


 store only those items that it encounters in the search for a derivation


 include machinery that further narrows down such ‘predicted items’

In this section, I will discuss the limited form of prediction used in the current LMG
prototype, and an improvement in terms of two-phase parsing with a context-free
backbone derived from the LMG.

Details of the current implementation

A simple calculation points out that simply encoding the memo tables into arrays of
boolean values is a hopeless enterprise—assume an input of length 1000, and one
would already need 1 megabits for each nonterminal of a context-free grammar; this
gets dramatically worse for tuple grammars. Therefore the prototype stores only those
items it encounters in a derivation. Storing only a limited set of items implies that
looking up an item in the memo storage is no longer an atomic action. However, as
the LMG prototype does, storing them in binary tree structures reduces the look-up
time to O�p log n� where p is the number of indices—twice the number of arguments
in a simple LMG.

I tested a straightforward implementation of a predicate descent algorithm, storing
the memo tables as binary trees, on sample grammars of Dutch and the toy program-
ming language pico, which is a highly simplified version of Pascal. The performance
on Dutch was within reasonable bounds. Although the times for parsing increasingly
large pico programs confirmed the expected O�n3 log n� complexity, the constants
involved turned out to be still so large that a 25 line program was too large to be parsed
within 32 megabytes of memo storage. I then made the following improvements:


 Not only are the complete items corresponding to nonterminals plus arguments
stored, also each partial assignment to the variables occurring in a rule, where
the variables are traversed in a fixed order, is stored, up to the point where such a
partial assignment is known not to produce any complete variable instantiations
for which a succeeding parse exists. This can be thought of as a form of
on-the-fly bilinearization of the grammar.

This optimization requires extra storage, but decreases the number of items for
which a proof is attempted—on the average, the space consumption turns out
not to increase. The time complexity is improved by an order of magnitude: for
example, only after this optimization an O�n3� complexity is obtained for all
context-free grammars.
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 Every component of each nonterminal, and every variable in each of the LMG
rules is associated with three tables ranging over terminal symbols: left-corner,
right-corner, occur and a flag lambda. These are instantiated when scanning the
grammar (i.e. independent of the input) and contain a boolean value indicating
whether given terminal symbols can occur at the left, right, at arbitrary places
in a component of a nonterminal, or whether this string can be empty.

These tables are used in the parser to restrict the number of items evaluated and
memoed to a limited subset: the idea is that a parse of a VP is not attempted if
it starts with the word Jan, because it can be derived from the grammar that this
situation does not occur.

A problem of this approach is that looking at the leftmost and rightmost terminal
symbol generated in a component of an item is not always effective. Moreover,
the terminal symbols in the LMG prototype are the 256 ASCII values—the
prototype is scannerless. With a sufficiently large dictionary, think of

NP � almond j bee j cheddar j dog j elk j � � �

this means that terminal corner prediction will not cut down the checked item
sets at all, unless longer sequences are examined, but this quickly results in
tables that are too big to store.5

The resulting system parsed a pico program of 84 lines in 6 seconds but took approxi-
mately 15MB of memory. With each doubling of the input program size, the memory
consumption grew five-fold and time consumption 10-fold. Although this does corre-
spond to the theoreticalO�n3� complexity, in practice much better algorithms exist.

The performance on a basic Dutch crossed dependency grammar however, a simple
LMG with 4-ary nonterminals, exceeded all expectations and was processed extremely
efficiently.

Multi-stage parsing

Instead of the static terminal corner predications described above, whose capacities
for statically ruling out items is too limited, this section and the next will look at
improvements of the performance of parsing (below) and attribute evaluation (section
7.4) using multiple stages, where the result of each stage is used in the next stage to
limit the number of investigated possibilities. This does not influence the theoretical,
or worst-case, complexity of these problems, but it has in practice often proven to be
an effective method, and is altogether not psychologically implausible—it is a form of
breaking a hardly manageable task into a number of chunks that are each manageable
in practice.

There are various solutions to CFG parsing that have tackled the space and time
consumption problems that occur in the LMG prototype. One of the most successful of

5It is tempting to think that this is a problem with scannerless parsing, but the problem is bound to occur
in some other form once grammars get sufficiently sophisticated.
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these is LALR parsing, which is popular in Computer Science, but is limited to a form
of context-free grammars that is deterministically parsable: one can proceed through
the sentence from left to right, finding precisely one parse if and only if the input string
is accepted by the grammar. A solution to this limitation is GLR parsing [Tom86]
[Tom91] [Rek92], which is still highly space and time efficient but can handle all
context-free grammars, and outputs a packed and shared forest. GLR parsers perform
essentially better than a predicate descent parser as outlined in the previous section.

I will now discuss how the time and space used in predicate descent parsing of
simple LMG can be essentially improved by adding a pre-processing stage of parsing
with a context-free grammar derived from the LMG. The idea is to look at each of
the components of the tuples derived by a nonterminal independently, so as to exclude
very improbable analyses—the occur checks in the LMG prototype already illustrated
such an independent analysis in terms of terminal corner and occur tables, but the one
on a derived CFG is more sophisticated, and will cut down the number of items to be
stored more substantially.

This is a simple construction, and two examples are sufficient to show how it
will work. Figure 7.7 on page 151 shows the context-free backbone for a grammar
analogous to the grammars of chapter 3.

In general, simple LMG or linear MCFG are not off-line parsable when split up
into a context-free phase and a filter; that is, the analyses w.r.t. a context-free backbone
contain cycles. This is already manifested in very simple practical grammars. While
the grammar in figure 7.7 is free of cycles, the more standard NP/VP grammar in
figure 7.8 has a CF backbone that does generate cycles (VPo � VPdVPo � VPo). At
first sight it is a pure coincidence that the binary branching grammars in this thesis,
with verb clauses rather than traditional VPs, are free from cycles in the context-
free backbone—they were certainly not designed to have this property. On the other
hand, they simply capture more linguistic knowledge and as such happen to provide
the simple context-free pre-processing stage with more information—in the NP/VP
grammar, a VP has a ‘direct object’ which is empty in the case of an intransitive VP.
This is an inelegant feature that the grammar writer is punished for by cyclicity in the
context-free backbone. When the grammar is extended with rules for modal verbs and
(partial) extraposition verbs, further ambiguity is introduced—be it finite and acyclic.
Whichever way the facts are turned, cyclicity in the context-free backbone is likely to
appear in more sophisticated grammars that allow more arbitrary components to be
empty.6

Such non-offline parsability is often considered a problem in implementations of
feature grammars—indeed, the corresponding SLASH-feature based models of Dutch
crossed dependencies are also not off-line parsable. However, if a parsing stage is
strictly split into two phases, whose interface representation of forests has a construc-
tion to represent cycles, this need not at all present a real problem. Such a division is
often not present in the Prolog based DCG implementations in which off-line parsabil-

6An example is an analysis in which lexical entries for verbs consist of two components, one of which
contains prefixes that can be separated from the verb, as appears frequently in German and Dutch—see the
footnote on page 193.
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LMG:

�1� Csub�dat s o h v� :- V0�s� o� h� v��
�2� Cdecl-wh�s h o v� :- V0�s� o� h� v��
�3� Cques�h s o v� :- V0�s� o� h� v��

�4� V0�s� o� h� v� :- N0�s��VI�o� h� v��
�5� VI�o� v� �� :- VT�v��N0�o��
�6� VI�s o� r� h v� :- VR�r��V0�s� o� h� v��

�8� VI��� zwemmen� ���

Backbone CFG:

�1� Csub � dat V0
s V0

o V0
h V0

v

�2� Cdecl � V0
s V0

h V0
o V0

v

�3� Cques � V0
h V0

s V0
o V0

v

�4� V0
s � N0

�4�� V0
o � VI

o

�4��� V0
h � VI

h

�4���� V0
v � VI

v

�5� VI
o � N0

�5�� VI
h � VT

�5��� VI
v � �

�6� VI
o � V0

s V0
o

�6�� VI
h � VR

�6��� VI
v � V0

h V0
v

�8� VI
o � �

�8�� VI
h � zwemmen

�8��� VI
v � �

Figure 7.7: Verb clause analysis and its acyclic context-free backbone.
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LMG:

�1� Csub�dat s d o h v� :- NP�s�� VP�d� o� h� v��
�2� Cdecl-wh�s h d o v� :- NP�s�� VP�d� o� h� v��
�3� Cques�h s d o v� :- NP�s�� VP�d� o� h� v��

�4� VP��� �� h� �� :- VI�h��
�5� VP�d� �� h� �� :- VT�h��NP�d��
�6� VP�n� d o� r� h v� :- VR�r��NP�n�� VP�d� o� h� v��

Backbone CFG:

�1� Csub � dat NP VPd VPo VPh VPv

�2� Cdecl � NP VPh VPd VPo VPv

�3� Cques � VPh NP VPd VPo VPv

�4� VPd � �
�4�� VPo � �

�4��� VPh � VI

�4���� VPv � �

�5� VPd � NP
�5�� VPo � �

�5��� VPh � VT

�5���� VPv � �

�6� VPd � NP
�6�� VPo � VPd VPo

�6��� VPh � VR

�6���� VPv � VPh VPv

Figure 7.8: Traditional NP-VP analysis and its cyclic context-free backbone.
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ity is a strict requirement. This is partly due to the fact that in a Prolog setting, cyclicity
(and even left-recursion A

�
� Aw) often presents difficulties. The memoing algorithms

proposed here, and also GLR parsing for context-free grammars, do not suffer from
similar problems—this is partly because their formulation arose in the context of im-
plementations in imperative programming languages whose pointer paradigm enables
straightforward circumvention of problems with cyclicity without penalties in terms
of algorithmical complexity.

Using the CF backbone for prediction

The problems, mentioned earlier, that arise when the ambiguous output of a parser is
used for further processing, play an equally awkward rôle when a direct attempt is
made at a form of merging the derivations for the different components of the same
nonterminal in a context-free parse forest resulting of the backbone parsing phase into
derivations according to the original LMG. The presence of cycles in the parse forests
makes such an algorithm even harder to construct. Obviously, the decision to multiply
out a parse forest into a list of parses, which is often taken at this point, is not sensible
at such an early stage.

However, in this particular case, there is a much simpler solution, which merely
uses the result of a context-free parsing stage for prediction, much like the corner and
occur tables are used in the prototype LMG parser of the previous section. The only
information that is used by the second stage in this case is, for each CF predicate,
whether it leads to a context-free parse or not. Hence the CF parser is only required
to produce a table of items that have a successful parse, and can disregard cycles. The
idea that if there is a cyclic parse, then there is also a non-cyclic parse, was already used
in the predicate descent algorithm (section 4.2). This context-free item information is
then used to predict useful items for the real LMG derivation. So the cycles need not
even be represented in the interface between the CF component and the LMG parser.

So far, I have glossed over the formal details of deriving a context-free backbone
from an LMG. I will refrain from working this out in detail, because it is a simple
construction. However, there is a number of details that needs attention. If the
grammar is an MCFG, it can be translated into a CFG by taking one nonterminal for
each component of each nonterminal.

Since the output of the context-free parser is used for prediction in the LMG
stage, it should contain at least all items that occur in a derivation of the sentence, but
certainly not less; in other words, the information must be accurate, but is allowed to
be optimistic. In the case of a PMCFG with a reduplicating rule, or an LMG, some
further investigation is necessary.

Case 1 A reduplicating PMCFG production, type A�xx� :- B�x�. In this case, the
rule is replaced with A1 � B1 B1. The latter rule produces all concatenations
of two strings recognized by B1, whereas the original PMCFG rule recognizes
only concatenations of two identical copies of strings recognized by B. Since
this is over-general, this is not a problematic case.
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Case 2 A sharing LMG clause, type A�x� :- B�x��C�x�. An optimistic solution to
this case is simply to drop the second use of the variable x on the RHS, producing
the context-free rule A1 � B1. While this seems an acceptable solution when
looking at this single rule, this rule may be the only one in a given derivation
that requires the item C�w� to be proved for a certain substring w of the input, in
which case the context-free parser will output an item set that is incomplete, and
the second phase may incorrectly conclude that no parse is found. Therefore,
such a clause must be translated to two context-free rules A1 � B1 and A1 � C1.
In the general case, the LMG rules must be multiplied out into 2s rules where s
is the number of times a variable is shared between two predicates on the RHS
of the clause.

A preliminary conclusion is that two-stage LMG parsing is essentially more involved
than two-stage PMCFG parsing, and when the former is implemented, sharing is
relatively expensive.

I have not tested an actual implementation. Therefore it is uncertain whether the
approach sketched actually performs well. It should be noted that the performance
of efficient context-free parsing techniques such as GLR is known to decrease when
cyclicity is introduced; I am not sure what the implications are of the idea that these
cycles need not be actually constructed, which is the case in the two-phase analysis
proposed here that outputs a set of recognized items only, instead of a forest.

Finally, it should be noted that the worst-case complexity is not improved by the
proposed optimizations. In the case of the PMCFG for a2n

on page 70 for example,
the result of the context-free pre-processing phase is useless. But in practical cases,
the benefit of each excluded predicate implies a constant speed-up that is polynomial
in the size of the input. In practical examples such as a slightly extended version of
the simple grammar for Dutch, the number of checked items is even a factor O�n2�
smaller than in the case without context-free prediction.
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7.4 Attribute evaluation

In section 7.2, a few problems were already mentioned relating to automated translation
over forest representations. The rewriting operations or translation functions must be
allowed to distribute over packing nodes, but this results in a high number of matching
rules, and possibly into unnecessary un-packing of forests if the translations obtained
turn out afterwards to be identical. The latter problem is sometimes solved by re-
packing, but none of the currently known solutions of this form avoid exponential
complexity in terms of the size of the packed, shared forest.

For some stages of processing performed on the output of a phase of syntactic
analysis, such as translation of compound expressions as illustrated in section 7.2,
un-packing forests seems to be a necessary step. In any case, it is obviously important
to cut down the size of the forest as far as possible before doing any such form of
structure-to-structure translation. This is where the finite attribute formalisms play an
important rôle.

For those stages of analysis that require only finite attributes, relations between
which are defined by equations local to the productions of the underlying grammar,
such as TGFL, better algorithms are known—however, their tractability depends
strongly on one’s point of view.

This problem has been recognized in the literature, and there is a number of
proposals for assigning finite attributes after a context-free parsing stage. DEKKERS,
NEDERHOF and SARBO [NS93] discuss a range of such solutions, and propose one
superior solution that takes a form of two-stage processing similar to the one for LMG
discussed in the previous section.

They propose to evaluate the attributes in two phases, the first of which is very
efficient, but optimistic, and substantially reduces the size of the forest. The second
phase proposed is again optimistic, but it interleaved with user interaction with the
final goal to yield a single remaining parse tree. The correctness of the algorithm
depends on this user interaction and selection of one single tree.

I will now discuss this proposal in a little more detail, give an example, point
out some problems, and propose solutions—but refer to [NS93] for the algorithms
themselves. Nederhof and Sarbo’s method proceeds as follows:

1. Parse the input sentence with the underlying context-free grammar.

2. A REGULAR NODE is a node that is not a packing or sharing node. Divide the
resulting parse forest into CELLS which are maximal connected groups of regular
nodes.7

3. (attribute evaluation phase A.) Associate with each regular node and each of the
restricting affix equations a table defining a subset of the relevant affix domain.
Initialize all these tables to contain all possible values.

7In [NS93] the packing and sharing nodes are inside the cells, but the choice to include them or not is a
matter of presentation and may play a r̂ole in a concrete implementation.
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Repeatedly perform the following actions, until there are no more changes to
the stored affix sets:

(a) For each regular node in each cell, restrict the stored affix subsets by
applying the restricting equations once.

(b) For each packing node, restrict the values of the affixes of the parent node
to the union of the values of the daughter node.

(c) For each sharing node, restrict the values of the affixes of the daughter
node to the union of the values of the parent nodes.

(d) Remove cells containing a node with an empty affix subset—these are
called dead wood and lead to a derivation that fails one of the constraint.
If a packing node has only one daughter, or a sharing node has only one
parent, eliminate it; the parent and daughter cells become a single cell. If a
packing node has no daughters, or a sharing node has no parents, eliminate
the remaining cell connected to it.

4. (attribute evaluation phase B.) Associate with each regular node a table storing
all possible tuples of affix values for the restricting equations, and repeat the
same procedure as in phase A, but when after termination the resulting forest
contains more than one parse, present one of the packing or sharing nodes to
the user and ask the user to choose one of the daughters. Remove the other
daughters and apply phase B again. Do this until only a single tree is left.

This algorithm has a time complexity linear in the number of nodes in the packed/shared
forest representation,8 exponential in the size of the largest domain of a single attribute
(phase A) and in the size of the largest total affix domain (phase B). Nederhof and
Sarbo propose various methods of storing the tuples of affix values in phase B so
as to achieve a better performance in practical implementations, and their results are
promising.

The approach is divided into two phases for practical reasons. Phase B is the one
with the highest complexity in terms of the sizes of the attribute domains, and in fact
phase A could be left out, resulting in a procedure with roughly the same behaviour,
and the same formal complexity properties.

In practice however, many parses can be ruled out by looking at the affix values
individually. The AGFL of figure 7.4 provides a good example: the context-free
analysis of the (incorrect) sentence the man walk yields the parse forest at the top of
figure 7.9. The figure shows how this forest is reduced to a single tree already in phase
A, so phase B need not even be applied.

In some cases however, the first phase does not spot impossible combinations,
such as with the grammar in figure 7.10. On the noun phrase der Hunde, phase A
will restrict the agreement features to agr�nomjdat�sgjpl�, but will not remove all

8Context-free parsing techniques which output packed and shared forest with the least possible order of
nodes in terms of the length of the input sentence are known—an example is GLR parsing.
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ambiguity. It is only in the second stage that the feature is reduced to agr�dat�pl�
and only a single tree is left.

In the context of TGFL over arbitrary simple LMG, there are two problems with
Nederhof and Sarbo’s approach,

1. When the algorithm is applied to simple LMG with sharing, or infinitely ambigu-
ous CFG with many �-productions,9 there will be cases in which the algorithm
will fail to recognize a forest that is empty, and will prompt the user to select
one of the alternatives. This happens in the situation in figure 7.11. Only after
the user has chosen one alternative, the algorithm will fail to produce a tree and
discover that the forest is empty.

2. A syntactical analysis based on finite attributes may be followed by stages of

9Such cases are explicitly ruled out in [NS93], amounting essentially to a requirement of off-line
parsability in the case of context-free grammars; for the LMG cases Nederhof and Sarbo’s conditions
effectively forbid the use of sharing, reducing the applicability of the algorithm to PMCFG.

phase A, step (d):  the entire forest is eliminated

the man

walk

N0

VI

V0

VI(1 | 2, sg) (1 | 2 | 3, pl)

S

VI
P

(3, sg) (3, sg)

phase A, step (a)

the man

walk

N0

VI

V0

VI(ø, sg) (3, ø)

S

VI
P

(3, sg) (3, sg)

phase A, step (b)

Figure 7.9: Phase A working on the incorrect sentence the man walk.
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further disambiguation, e.g. based on anaphoric linking and/or semantic domain
restrictions, which arguably cannot be carried out over finite domains. Both the
efficiency and the correctness of the algorithm depend on the property that the
result is a single parse tree: if the algorithm is applied without user interaction,
and at a stage in phase B where the algorithm cannot further cut down the forest,
there are two mutually dependent binary packing nodes left, then the algorithm
has at that stage a forest containing 4 parses only 2 of which are correct.

The solution to both these problems is to apply algorithms in the spirit of Nederhof and
Sarbo’s for as many possible stages of analysis, but as a final step, to eliminate packing
nodes where necessary, and perform further stages of analysis on the remaining,
hopefully very few, analyses.

An objection to such an approach by the formal-minded reader may be that this
may be an average-case speed-up, but it does not improve the situation in the general

D � fDgender�Dnumber�Dcaseg
Dgender � fm�f�ng
Dnumber � fsg�plg

Dcase � fnom�gen�dat�accg
��N0� � EMPTY

fV0 � e : EMPTY
��VI� � ��N0� � NAGR

fVI � fN0 � nagr : �Dgender 
Dnumber 
Dcase�� NAGR

�r1� N0 � D0 : nagr�g� n� c�� NC : nagr�g� n� c�

�r2� D0 : nagr�m�sg�nom� � der
�r3� D0 : nagr�mjn�sg�gen� � des
�r4� D0 : nagr�mjn�sg�dat� � dem
�r5� D0 : nagr�m�sg�gen� � den
�r6� D0 : nagr�f�sg�nomjacc� � die
�r7� D0 : nagr�f�sg�genjdat� � der
�r8� D0 : nagr�n�sg�nomjacc� � das
�r9� D0 : nagr�mjfjn�pl�nomjacc� � die
�r10� D0 : nagr�mjfjn�pl�genjdat� � der

�r11� NC : nagr�m�sg�nomjdatjacc� � Hund
�r12� NC : nagr�m�sg�gen� � Hundes
�r13� NC : nagr�m�sg�dat� � Hunde
�r14� NC : nagr�m�pl�nomjgenjdatjacc� � Hunde

Figure 7.10: AGFL for noun phrase agreement in German.
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B(1|2)

P

S

S

E

B(1|2)

D(2) D(1)

A

C(1) C(2)

C(1|2)

B(1|2)

Figure 7.11: Annotated LMG forest for which Nederhof/Sarbo’s algorithm fails.

case. This is true, but as in the case of context-free preprocessing for LMG parsing,
every analysis eliminated from the forest in order n time reduces the input for the
further, theoretically exponential stage, which means an exponential benefit, even
though theoretically, the remaining problem is exponential.

In some practical cases, different sets of finite attributes have no interaction at
all. An example is the illustrated morphological analysis in terms of person and
number versus simple lattice-based semantic domain information. In such cases,
phase B can be executed on these different, independent sets of affixes separately
and consecutively, so as to achieve a better time and space complexity in each of the
phases. The different phases may also be equipped with algorithms whose parameters
are tuned for efficiency on the particular size of the involved attribute domains, which
are likely to be essentially different for e.g. morphological processing and semantic
domain information. This observation may also have implications for some of the
calculations made for the computational hardness of finite attribute systems such as
GPSG in practical cases.
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7.5 Using simple LMG for extended representations

The proposed solutions in this chapter have glossed over the possibility of using
the power of simple LMG directly to model attachment of various attributes. This
possibility is interesting from a formal perspective, but in practice, is rather limiting,
because the complexity of such approaches is prohibitive. For the sake of completeness
however, I will illustrate this option briefly. Another interesting facet of LMG is its
capacity of capturing constraints over integer numbers bounded by the length of the
input sentence.

7-11 example: LMG over lattices. If a simple LMG is translated to an iLMG
as defined in proposition 5-6 on page 109, the indices of this iLMG need not be
interpreted as indices in a string; they can also be taken to refer to the nodes in a string
lattice, or equivalently, to the states in a finite automaton. Such an approach is often
taken in speech analysis, in which the input string consists of an ambiguous sequence
of morphemes.

One problem to watch out for in this case is the use of sharing on the RHS of
an LMG production. This will enable an LMG analysis over an input lattice to take
different threads in the lattice for the shared part of the input. Further research will need
to investigate how such possible problems can be circumvented, perhaps by requiring
subderivations to show matching patterns at their leaves when sharing is used. Of
course, such a solution may have consequences for the complexity of LMG parsing.

7-12 example: additional input and attributes. Without damaging the complex-
ity results, an LMG may be taken to have a start symbol S that takes more than one
argument, one of which is the input string, and where the other arguments are instan-
tiated with constant strings or string lattices. Such a lattice can then model a domain
of finite affixes as used in AGFL. Sharing can be used to model agreement on affix
values.

7-13 example: integer components. A hybrid definition combining features of
simple LMG and iLMG can allow a grammar to manipulate both strings and integer
values bounded by the length of the input, while maintaining polynomial complexity
of recognition.

This has various applications, most notably in examples such as co-ordination and
number series, illustrated in chapter 8. A problem with co-ordination not discussed yet
is that a grammar using sharing will recognize the incorrect Dutch sentence (7.12).10

�� � � dat Anne Frank aankwam en zag.
“That Anne Frank arrived and Anne saw Frank.” vs.

*“That Anne saw and arrived Frank”

(7.12)

Such a situation can be avoided if verb clause conjuncts have an integer argument that
counts the number of object noun phrases.

10Manaster-Ramer [MR87] used Willem-Alexander for similar examples, but pointed out that the dash
between Willem and Alexander is problematic.
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More complex examples, perhaps along the lines of the rules for counting oc-
currences of categorial operators in co-ordinated (non-)constituents proposed in [CH],
may be able to make sophisticated sharing analyses of co-ordination correct that would
otherwise be able to conjoin elliptic phrases whose structures are not compatible. In
more general terms, the cases of sharing marked ‘dangerous’ elsewhere in this thesis
can be fixed with, or replaced with, sharing over integer values.

This capacity to deal with integer values bounded by the size of the input string
may also help treating those cases that cannot be dealt with using the finite attribute
techniques proposed in this chapter.
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Conclusions to chapter 7

This chapter is a plea for separation of the tasks of parsing and processing of attribute
constraints into several dedicated phases. These phases need to be well argued for,
before any attempts are made to develop an actual natural language system on these
grounds. Part III of this thesis will provide additional argumentation for the divisions
made here. This is not the current trend in linguistics, which is rather more to attempt
to put the whole of linguistic structure, attributes, semantic representations, &c. into
a single descriptive framework. There are, however, published arguments inspired by
practically oriented research which argue for separation of tasks into separate dedicated
phases of analysis.11

This is not to say that such an approach is void of problems—most notably,
the interaction between various stages of analysis, which all feature highly similar
disambiguation problems, is hard to implement. Once one stage of analysis is over,
later stages can take profit from the attributes it has calculated, but not vice versa.
Another problem of having several distinct, optimized stages of analysis is that they
need to be argued for on a principled basis, because once such a stage is built in, it
is there for its fixed purpose, and this is against the wisdom of re-usability. On the
other hand, there clearly are distinct differences in the nature of ambiguity at different
locations in the process of syntactic, binding and semantic analysis. The more complex
features of semantic disambiguation seem, at the current level of knowledge, altogether
impossible to treat without exponential expansion. Therefore, the more analyses can
be eliminated using simple tools, the better one can cope in large-scale systems on
the basis of contemporary methods of analysis—when it is born in mind that if a final
stage of analysis is exponential in the size of the structure it operates on, then every
previous stage that can reduce the size of this structure by as much as a constant factor,
already implies a speed-up by an exponential factor.

11An example is [Sei93], which surprisingly is a discussion in the context of feature formalisms and
unification, which usually aim at capturing as much as possible in a single representational system.
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Chapter 8
Abstract generative capacity

This chapter is the first of part III of this thesis, in which instead of looking at what, i.e.
what string sets a formalism can theoretically generate, I investigate what one should,
linguistically speaking, want to be able to describe, and in a limited an abstract sense,
how one should be able to describe those phenomena. That is, the focus is moved
from a theoretical, platonistic view on linguistic capacity, to an explanatory view—I
demand that the linguistic analyses given by our formalisms shed light on the precise
nature of what is analyzed.

Section 8.1 picks up the thread of the chapters 1 and 3 by going deeper into weak
generative capacity and introducing the notion of MILD CONTEXT-SENSITIVITY (MCS)
as defined by Joshi in [Jos85], and puts the formalisms and complexity results of parts
I and II in the context of the MCS discussion. In this section, I also give a brief
list of other phenomena to argue about the structural capacities of grammatical for-
malisms, than the partial verb clause conjunctions of Manaster-Ramer that dominated
the discussion in chapter 3.

Section 8.2 does the same, but in a less wide scope, for strong generative capacity.
It looks at the consequences of demanding a bounded dependency domain (defined
in chapter 1) for descriptions in MHG and PMCFG. The conclusion drawn for the
case of MHG will be used as a motivation for some properties of the head grammar
solutions proposed in chapter 10.
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8.1 Weak generative capacity and the mildly context-
sensitive

In chapters 1 and 3, I gave arguments that the underlying structure of natural languages
is beyond the weak generative capacity of CFG and even beyond the capacity of the
more general class of linear MCFG. In chapter 5 it was shown that simple LMG
describe precisely the class of languages that can be recognized in polynomial time. In
this section I make an attempt to put these facts together in a discussion concentrating
on finding a class containing precisely those languages that are structurally no more
complex than a “natural language”. In [Jos85], ARAVIND JOSHI proposed an informal
outline of such a class: the mildly context-sensitive languages. I will give his definition
here, then look at a series of examples and finally discuss other specifications of similar
classes.

8-1 deÆnition. [Jos85] A MILDLY CONTEXT-SENSITIVE LANGUAGE (MCSL) is a lan-
guage that has the following three properties

1. limited crossed dependencies

2. constant growth (definition 8-2)

3. polynomial parsing

*

The class of mildly context-sensitive languages is often confused with the class of
languages described by the TAG formalism; this is because the concept of mild
context-sensitivity appears almost uniquely in the TAG literature, which often fails to
mention stronger formalisms; it is more appropriate to say that MCS is most adequately
approached by linear MCFG.

I will here equate ‘polynomial parsing’ with the notion of having a polynomial
recognition procedure. A better definition is not feasible as long as the definition of
mild context-sensitivity is said to talk about languages rather than about grammat-
ical formalisms, for a class of languages has no a priori given structure. ‘Limited
crossed dependencies’ is also vague, and I will attempt to replace it here with formal
equivalents.

The essential element in the definition proposed by Joshi is the constant growth
property, which is defined as follows:

8-2 deÆnition. A language L has the CONSTANT GROWTH PROPERTY if there is a
constant c0 and a finite set of constants C such that for all w � L where jwj 	 c0 there
is a w� � L such that jwj � jw�j� c for some c � C.

*

Constant growth is intended to roughly capture two properties of natural language: (i)
it features recursion or unbounded embedding and (ii) such recursions appear, in some
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sense, in finitely many different basic forms. Two stronger properties that emphasize
approximately the same features are k-pumpability as defined in chapter 3, repeated
here as 8-4, and semilinearity.

8-3 deÆnition. A language is called SEMILINEAR if it is letter equivalent1 to a context-
free language, i.e., for any semilinear language M there is a context-free language L
such that a word w is in M if and only if there is a permutation v of w in L.

8-4 deÆnition. A language L is UNIVERSALLY k-PUMPABLE if there are constants c0
and k such that for any w � L with jwj 	 c0, there are strings u0� � � � � uk and v1� � � � � vk

such that w � u0v1u1v2u2 � � � uk�1vkuk, for each i: 0 	 jvij � c0, at least one of the vi

is not the empty string and for any p � 0, u0v p
1 u1v p

2 u2 � � � uk�1v p
k uk � L.

*

Both k-pumpability and semilinearity imply constant growth; there is no direct re-
lationship between semilinearity and pumpability. Every linear MCFL is obviously
semilinear, because a letter equivalent CFG can be constructed straightforwardly by
eliminating the component boundaries. Not every semilinear language is a linear
MCFL; OWEN RAMBOW [Ram94] presents a formalism that has a greater weak gen-
erative capacity than linear MCFG (equivalently, Rambow refers to MC-TAG), but
still generates semilinear languages.

I will now proceed by giving a series of examples of languages, both simple formal
and from natural languages, from the literature, and the properties these languages
satisfy.

8-5 example. The unbounded partial conjunctions of proposition 3-15 were shown
not to be universally k-pumpable for any k. Along the lines of the same argument, it
is easily seen that as an isolated fragment, they also do not have the constant growth
property: let c be the largest number in C, then take c conjuncts each of length c � 1.
As a consequence, they are also not semilinear.

*

The unbounded conjunctions are sometimes argued to be of a not immediately syntactic
nature; as anaphoric binding, one can argue that co-ordination has a semantic, or even
mathematical quality that is perhaps not wise to include when looking at the capacity
of linguistic structure—for example, the human language faculty may be able to tackle
these restrictions by a form of multi-stage processing as discussed in chapter 7.

The following two examples show sets that are not pumpable, not semilinear, but
do satisfy constant growth. The first example is clearly beyond the intended capacity
of natural languages, opinions on the second example vary. A preliminary conclusion,
drawn often in the literature, is that constant growth is a too weak restriction for what
it is intended to capture.

1Note that letter here should be interpreted as terminal symbol, i.e. usually an entire word when thinking
in terms of natural language grammars.
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8-6 example. The languages a2n
and b�a2n

both clearly qualify as unnatural. The
first language does not have the constant growth property, but the second language
does. Neither of the languages is semilinear, and neither of them is universally
k-pumpable. The second language is not k-pumpable, because the statement of k-
pumpability includes the possibility to pump down, and the if string ba2n

can be
pumped up, then the pumped string must be b; pumping down removes the b and
results in a string outside the language.

*

Various attempts have been made to improve the definition of constant growth, by
increasing its detail, but for each of these, further counter-examples were found (see
[Rad91]).

8-7 example. [Rad91] In Mandarin Chinese, the highest number unit expressed in a
single word is zhao, which is 1012. Higher numbers are expressed by series of zhao,
just like in English one can think of a thousand thousand as denoting one million.
Let NC be the set of well-formed Chinese number names. The fragment of numbers
expressed using zhao and the word wu (five) has the following form:

J � NC � �wu zhao���

� fwu zhaok1 wu zhaok2 � � � wu zhaokn

j k1 	 k2 	 � � � 	 kn 	 0 g

(8.1)

The set J is shown not to be k-pumpable for any k in [Rad91]. This set will, modulo
a finite number of exceptions, be equal to the intersection of Chinese with the same
regular set. Hence Chinese is not a linear MCFL.

However, the fragment J can be generated straightforwardly by a PMCFG or
simple LMG.

*

In [MK96], KRACHT and MICHAELIS show that the fragment J is also non-semilinear.
However, unlike the proof that J is not a linear MCFL, this does not imply that the full
Chinese language is not semilinear, unless one claims that properties like semilinearity
of natural languages are preserved under taking certain well-defined subclasses, as J
is a well-defined subclass of NC. The same holds for the argument using Dutch or
German unbounded partial verbal clause conjunctions.

Michaelis and Kracht do show the non-semilinearity of a full natural language, but
using a rather complex construction which, as far as I can see, is not trivially applied
to the Chinese number names and the verb clause conjunctions; this language is OLD

GEORGIAN, and the example has the additional advantage that it is completely free of
co-ordination and mathematical properties. Old Georgian features a form of genitive
suffix stacking that is highly similar to the Chinese numbers: there are noun phrases of
the form

N1-nom N2-gen-nom N3-gen-gen-nom � � �Nk-genk�1-nom
�“N1 of N2 of � � � of Nk”�

(8.2)
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where gen and nom contain suffix elements and Ni are noun stems.

From the discussion so far, the following conclusions can be drawn: on the one
hand, the constant growth property is too weak to exclude sufficiently a number of
artificial languages that one does not want to permit (but which are recognizable
in polynomial time), so one would rather want to replace it with a property like
semilinearity or universal k-pumpability. These however suffer from two problems: (i)
they characterize classes of languages that are not closed under taking well-motivated
subclasses, where I would like to define ‘well-motivated’ formally by such operations
as intersection with regular sets and applying homomorphisms; and (ii) they are slightly
too strong, where the best counterexample is probably Old Georgian.

In the literature, it has been argued that what is missing is the capacity to describe
forms of reduplication, in the form of languages of the form f w h�w� j w � L g
where L is context-free or regular. In fact, MANASTER-RAMER has even proposed
that while reduplication is an essential construction in natural language, the “mirror
image” construction f w h�w�R g is not,2 and a suitable class of languages is obtained
by closing the regular languages under forms of reduplication rather than embedding.
This seems unlikely, because mirroring is the canonical form of the German verbal
clause.

While weakly speaking, reduplication plus applications of homomorphisms and
inverse homomorphisms seems to be able to generate crossed dependencies in Dutch, I
have doubts as to whether this leads to strongly correct systems (in contrast, probably,
to cases such as old Georgian and the Chinese number names). Hence, a class like
PMCFL seems to be appropriate weakly speaking, but not strongly. This puts the
search for a suitably defined class of mildly context-sensitive languages in a slightly
dubious light—what is really searched for is a class of structural descriptions, but then
one runs into the lack of an all-comprising structural meta theory.

To conclude this discussion, I propose to define an alternative class of mildly
context-sensitive languages by the following definitions, the most important of which
is finite pumpability, which is as universal k-pumpability, without specifying the fixed
integer number k in advance. The lack of a proper reflection of underlying structure is
in these definitions reflected in the requirement that the class is closed under the AFL
(abstract family of languages) operations.

8-8 deÆnition: Ænite pumpability. A language L is FINITELY PUMPABLE if there is
a constant c0 such that for any w � L with jwj 	 c0, there are a finite number k and
strings u0� � � � � uk and v1� � � � � vk such that w � u0v1u1v2u2 � � � uk�1vkuk, and for each
i, 1 	 jvij � c0, and for any p � 0, u0v p

1 u1v p
2 u2 � � � uk�1v p

k uk � L.

*

Finite pumpability excludes quadratically and exponentially growing languages, while
admitting the conjoined partial verb clauses and Radzinski’s Chinese number names.

2By convention, wR denotes the mirror image of w, i.e., the string obtained by reversing the terminal
symbols in the string w.
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It puts the boundary on language growth between the number names and the strict-
monotone growing language (8.3) which approaches quadratic growth. 3

f abaab � � �bak�1bak g(8.3)

The following tentative definitions are two ways of further formalizing (i) the notion of
‘limited crossed dependencies’, including a limited form of co-ordination that excludes
the ‘square’ pattern I argued needed to be excluded,and (ii) the fact that the pumpability
restriction needs to be preserved under taking subclasses and homomorphic projections.

8-9 deÆnition. O-MCSL (optimistic mild context-sensitivity) is the largest class of
languages that

1. is a substitution-closed AFL, i.e. closed under union, concatenation, iteration,
intersection with a regular set, and substitution.

2. contains only languages that are finitely pumpable

3. is included in PTIME-DTM

*

Note that this class exists, and subsumes at least linear MCFL, but not all of PMCFL.
One might raise the objection that this definition is indeed ‘optimistic’, and might
generate languages that we have not envisaged. On the other hand, it needs to be
proved that it does not collapse into MCFL. Therefore I give the following, again
tentative, parametrizable alternative:

8-10 deÆnition. (tentative) A class C of languages is said to GENERATE A CLASS OF

P-MCSL (pessimistic mild context-sensitivity) M if the closure M of C under the
AFL operations contains only languages that are finitely pumpable and is included in
PTIME-DTM.

*

Candidate members for the class C are formal equivalents of linguistic construc-
tions like embedding and reduplication, encoded in such a way that dependencies
are sufficiently stressed. At least the fragment J, and the classes of homomorphic
2-reduplications and homomorphic mirror images over regular languages should be
included.

Finally, there is a construction for which it has argued to be unlikely that it can at
all be analyzed by a polynomial time algorithm.

3I have slight doubts as to whether such a language should actually not be allowed to count as not
excessively growing, on psychological grounds. It seems clear to me that a human should in general not be
able to process a fragment that consists of k2 letters a, but in the same way as we can distinguish whether a
number sequence is correctly decreasing, we should be able to check that a series is increasing or decreasing
by one occurrence of thousand or zhao at a time.
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8-11 example: scrambling. While the standard order in the German verb clause
is embedded, in some cases German shows different orders of the objects; this phe-
nomenon is known as SCRAMBLING—the example (8.4) is taken from [RJ94].

a. � � � daß der Detektiv niemandem den Mann des Verbrechens
zu überführen verspricht

b. � � � daß [des Verbrechens]k der Detektiv [den Mann]j niemandem
[�j �k zu überführen] verspricht

“that the detective has promised no-one to indict the man of the crime”

(8.4)

If it is assumed that all objects in the German clause can in principle occur in any
order, then scrambling is shown to be beyond the capacity of MC-TAG in [Ram94].
It is currently unknown whether scrambling in this form can be tractably processed
at all. Similar phenomena occur in the Dutch verb cluster, where the order of verbs
(as opposed to the objects) can in some cases be reversed. Even the simple LMG
formalism does not seem to provide any methods that can be immediately recognized
as solving such problems, because it still splits up constituents into boundedly many
clusters.

In the case of scrambling however, it must be noted that examples from real German
texts are obviously all of limited size, and the fact that complements can be scrambled
is licensed by the overt morphology of the different cases. I have not come across any
examples that shared two or more objects in one of the four German cases that could
be swapped, while even simple examples as (8.4b) above are already at the border of
acceptability.

Let’s assume for now that it is empirically provable that when a German verbal
clause contains two object NPs in the same case, e.g., both accusative, then the deeper
embedded NP must appear after the higher NP. In this case it is easy to construct a
loosely interpreted XG along the lines of the examples for Dutch cross-serial clauses
(sections 2.2 and 6.2) with one bracket type for each of the four German cases, that
generates precisely the admissible scrambled sentences. So when this restriction is
valid, German scrambling can be analyzed in polynomial time!
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8.2 Strong generative capacity and the dependency
domain

It is left open in the discussion in the previous section exactly what combination
of sharing or reduplication with a subset of multi-component rewriting is sufficient
for known natural languages. An important question in the chapters to follow is,
supposing for example that simple LMG is a sensible point of departure to build
a principled system based on axioms that further characterize properties of natural
language, how many components or clusters would be required for the nonterminals
in an underlying LMG model. Another question which has not really been solved is
whether reduplication is really adequate, in a strong or explanatory sense, to describe
the examples in the previous section.

Dutch long-distance topicalization and MHG

The following argument shows that if modified head grammar, which splits up con-
stituents into two surface clusters, is to generate a fragment of Dutch sentences with
a bounded dependency domain, the resulting structural analyses are unorthodox. In-
stead of then marking HG as ‘incapable’, I will use this observation in chapter 10 as a
motivation for inverting some traditional dominance relations in relative clauses.

The fragment under investigation in this section is the wh-interrogative sentence
(8.5), which can be thought of as correspondingstructurally to a relative clause, without
the requirement that either the extraposed pronoun and the finite verb are boundedly far
apart in the structural representation—this is consistent with the idea expressed earlier
that localizing selectional dependencies is to be preferred over localizing elements that
are ‘close’ in a surface-structural representation.

Wat
what

zag
saw

Frank Juliak�1 zien
see

k
drinken

drink
?(8.5)

I will now examine systematically how an MHG could generate such a small fragment,
which, if they are to generate Dutch in the strong sense, must be the case by the
classificatory capacity requirement one can reasonably make in the case of an sgc test.

Suppose there is an MHG of the fragment. Then a sufficiently long member of the
fragment must be pumpable, that is, its derivation has a recursive step (8.6).

A�w1� w2�

Γ A�u� v� ∆

(8.6)

where w1 � t1�u� v� and w2 � t2�u� v� can be thought of as terms where u and v are
variables. By linearity and non-erasingness, both u and v are projected into w1w2
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precisely once; moreover since the first component in a MHG invariantly appears in
the sentence before the second component, the residue of u must precede that of v in
w1w2.

The rest of w1 and w2 must consist of an equal number m of the terminals Julia
and zien. Since all occurrences of Julia are to precede all occurrences of zien in
the sentence, w1 can contain only Julia and w2 only zien.

Now, suppose the analysis has a bounded dependency domain. Then the Julia’s
and the zien’s generated must be separated by boundedly many dependency arcs;
that is, the following possibilities remain:

1. w1 � Juliam u� w2 � zienm v
2. w1 � u Juliam� w2 � v zienm

3. w1 � Juliam1 u Juliam2 � w2 � zienm1 v zienm2 �

Now suppose that drinken is produced at the bottom of the derivation. Then because
of locality, so must wat. But drinken must appear right of all occurrences of zien, and
wat must appear left of all occurrences of Julia. This leads to a contradiction. The
same holds for wat.

Therefore, if the fragment is to be produced by an MHG with a bounded depen-
dency domain, the deepest embedded verb drinken and its complement wat must be
generated at the top level of the derivation! This may be counter to one’s intuition, but
is not surprising, since it is directly linked to the topic wat of the sentence. One is now
left with two possibilities.

1. zag and Frank are produced below the recursive step; this implies that the whole
derivation is “turned up side down” with respect to traditional analyses:

h zag Frank Julia� � i
h zag Frank Julia Julia� zien i

...
h zag Frank Juliak�1� zienk i

h wat zag Frank Juliak�1� zienk drinken i

2. zag and Frank are produced above the recursive step. This results in a derivation
that has both the deepest embedded verb and the main verb at the top of the
derivation, and whose bottom is in the middle of the verb embedding.4

h Julia� � i

h
z �� �
Julia Julia Julia� zien� �z � zien i

...
h Julia2k�1� zien2k i

h wat zag Frank Julia2k�1� zien2k drinken i

4The braces indicate which occurrences of zien and Julia are connected through immediate dependency.
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with an extra step to produce verb embeddings of odd depth—this is redundancy
in the grammar.

The first of these remaining options is investigated in chapter 10.

Reduplication and partial verb clause conjunctions

I have expressed, several times, doubts as to whether in the strong sense, reduplication
can be the mechanism responsible for generating the parallelism in the partial verb
clause conjunctions in the examples in chapter 3. Furthermore, the proof that PMCFG
generate this set weakly, is based on the proof in [SMFK91] which, as said in the
conclusion to chapter 3, lacks detail.

A PMCFG that generates the conjunctive phrases was argued to exist on the
basis of a grammar generating a structural backbone, and then applying an inverse
homomorphism to produce the actual set. The first objection one might raise is that
the set of noun phrases in Dutch is not a regular set, so a homomorphism will not do,
and one must apply a substitution. If Kasami et al.’s proof is correct, this objection
does not present a problem.

The details of argumentation on PMCFG are dazzling, because pumping can be
applied, but because of nonlinearity, the pumping lemma does not take a concrete,
concatenative form. However, it seems that a strong generative capacity analysis
will show that a PMCFG that describes Dutch sentences necessarily has a number
of components for nonterminals that is proportional to a function that is at least
exponential in the number of lexical entries for verbs (or noun phrases, if the fragment
is limited to single-word lexical NPs). It needs to produce all possible orders of the
finitely many lexical entries for raising verbs. The argument then naturally leads to a
contradiction when requiring a bounded dependency domain.

It now depends strictly on what one takes to be the “underlying structural basis
of natural language” to establish whether one thinks of reduplication as being what is
really happening in the case of partial verb clause conjunctions. If it is, then surely
this would establish the necessary existence of a further step of syntactic processing
after analyzing the underlying structure of a conjunctive sentence.
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Conclusions to chapter 8

There are two conclusions to this section that strongly influence the approaches in the
rest of part III. The first is, that in a principle-based approach to grammar specification,
a form of the mild context-sensitivity definition can be taken as a core set of axioms.
I suggest to consider a number of the aims expressed in the Prologue and the first
chapter of this thesis also as axioms, which then leads to the idea that simple LMG is a
reasonable generic framework which could be further restricted through principles and
parameters so as to finally result in a grammar with a reasonable amount of explanatory
quality, and for which some computational tasks are tractable. This is done in chapter
10.

The loose XG-account of scrambling is new, but works only for a restricted case,
which is hard to evaluate empirically because of the difficulty of scrambling example
sentences. What was found here is not dissimilar to results of analyses done by OWEN

RAMBOW ([Ram94] and p.c.). From the existence of a loose XG analysis, it follows
that S-LMG can also weakly generate scrambling, but a strongly correct analysis is
unlikely.

If the closure result of PMCFL under inverse homomorphism is indeed found
to be true, then for all examples except scrambling, it may be sensible to add that
strongly, simple LMG is a good point of departure, but weakly, the languages under
investigation should be in PMCFL. Adding reduplication to simple LMG, which is
a conservative extension from a weak perspective, may further increase its relevant
strong capacity.

Another, minor, conclusion following from the second section of this chapter has
had influence on the proposed method of describing relative clause attachment in
chapter 10.
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Chapter 9
Government-Binding theory

What is a systematic description of a language? Clearly, this is not just a list of the
correct sentences of the language, because such a list does not have any explanatory
qualities. A rule-based grammar as I have shown examples of in parts I and II is
better, but suffers from the same problem: such grammars seem to describe a language
fairly accurately, but some sets of rules show similarities which are not explained, and
the question remains why the rules look like they do. A principle-based grammatical
framework tries to formulate general properties of language from which the linguistic
structures, or the rules that describe these structures, can be derived.

An example of a generalization missed in a rule-based grammar is that in English,
all verbs tend to immediately precede their objects. Although every rule in the grammar
constructing verb phrases is consistent with this observation, the rule itself is not stated.
Among many other theories, such as GPSG [GKPS85], GOVERNMENT-BINDING (GB)
THEORY captures such word order generalizations, by giving rules only for phrase
containment, and specifying word order constraints separately. Note also that phrase
containment is subject to less variation among different languages, whereas whether
complements precede or follow their heads depends strongly on the language under
investigation. Therefore such a separation also helps dividing the components of a
grammatical description into universal and language-particular properties, and as a
side effect helps understanding multi-lingual analysis and (automated) translation.

*

In its presentation in parts I and II, literal movement grammar and its way of describing
surface order lacks such a profound principled background. It was introduced without
much motivation and its properties were investigated in a theoretical fashion that
looked primarily at the resulting languages, and even this was done mostly on the basis
of weak generative capacity.

This chapter on GB theory, and the next, about FREE HEAD GRAMMAR, will make
the move from the practice of directly writing the grammar clauses, to an axiomatic
system where the precise form of the grammar is not given but rather follows from
a set of constraints, divided into PRINCIPLES of language in general and PARAMETERS

restricting the grammar to a particular language or a fragment of it.

Such axiomatized systems aim at giving a set of properties that language must
satisfy, and at providing a concise motivation for the exact statement of these properties.
Both GB theory and forms of head grammar (which, with its close relative GPSG, was
superseded by HPSG [PS94]) are such explanatory systems, and in particular, they
offer explanations for what exactly is the rôle of movement in linguistic structure—

177
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which is exactly what part III of this thesis is after.

This chapter represents the conservative approach to finding a principled basis
for the tuple-based description of movement. It will introduce the reader to some
concepts of the principled, explanatory approach in general and of GB theory in
particular. Benefits of such a conservative approach are that (i) it is good to have a way
of assessing the value of the grammar formalisms from part I and what is done in the
principle-based tuple grammar system FHG in chapter 10 and (ii) GB provides, among
many theories, the most satisfactory, and the farthest elaborated empirical analyses, so
it is worthwhile to investigate how results of generative Linguistics can be reformulated
in principled accounts based on literal movement.

The account given here is a very sketchy, simplified version of a framework in
Government-Binding style, and in order to allow for a short presentation, it makes use
of non-standard terminology. A good textbook is [Hae91] (on which this chapter is
loosely based).
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9.1 Phrase structure and X� syntax

GB is a phrase-structure based, strictly hierarchical, projective theory. That is, one
of its most basic principles is that a sentence has a SURFACE STRUCTURE that can be
drawn as a tree diagram spelling out the sentence from left to right at its leaves, or
equivalently, by means of LABELLED BRACKETS. A complete labelled bracketing as in
(9.1) fully specifies a tree structure; however, in practice, one often looks at partially
specified trees by omitting brackets (9.2).

�S �NP Frank� �AUX will�
�VP �V poor� �NP Julia� �NP �Det a� �N cup� �PP �P of� �NP �N tea�������

(9.1)

�S �NP Frank� �AUX will� �VP poor Julia a cup of tea��(9.2)

Furthermore, categories and phrases play rôles similar to those sketched in section 1.3
of the introduction.

9-1 principle: surface structure. Every sentence has a projective surface struc-
ture.

9-2 principle: categories. Words belong to SYNTACTIC CATEGORIES like nouns
and verbs. There are TERMINAL CATEGORIES X (those of words) and corresponding
PHRASAL CATEGORIES X�, XP.

*

The notion of selection mentioned briefly in the introduction, is called subcategoriza-
tion in GB theory, and is restricted to terminal categories, i.e., to words in the lexicon.
Subcategorization on GB consists of ARGUMENT STRUCTURE as well as a further re-
finement, �-theory of THEMATIC STRUCTURE, which aims to explain why a word selects
certain complements by assigning the complements rôles such as actor, patient. I will
gloss over thematic structure here because it can be considered optional in this and the
next chapter.

Each lexical entry for a word contains a subcategorization frame, that is a list of
category specifications the word selects for.

9-3 principle: Lexicon and selection. There is a LEXICON specifying the (termi-
nal) categories and properties of words. A lexical entry specifies a SUBCATEGORIZATION

FRAME; The subcategorization frame specifies a finite number of ARGUMENTS, their
category, and in the case of an NP arguments, optionally specifies a case assignment.

*

An important component of GB also often referred to by other frameworks is X �-
theory, which says that there may be levels between a phrasal category XP and the
lexical equivalent X. In general, one assumes a single intermediate level X� (“x-bar”).
These levels are then characterized by three rules that specify phrase containment, but
no order:
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9-4 principle: X� projection. Phrase containment satisfies the following domi-
nance restrictions, for any basic categories X, Y, Z, S.

XP � SP; X�

X� � X�; YP
X� � X; ZP1 ZP2� � � �

X is the HEAD of XP; SP is the SPECIFIER and ZPi are the ARGUMENTS of the head X.

*

The first rule of the X� schema says that a phrasal category consists of an obligatory
SPECIFIER and an intermediate level. At the intermediate level, other phrasal categories
are optionally adjoined (such as adjectives or adverbs). The third rule says that an
intermediate level consists of the terminal head and its complements as defined by
its subcategorization information in the lexicon. In all these rules, the order is not
specified, but the specifier, adjuncts and complements either precede or follow the
X-projection, so operations like wrapping as discussed earlier are not considered.

Precisely what phrasal categories are allowed as specifiers and adjuncts, as well
as whether these precede or follow, is considered a language-dependent parameter
of the grammar. In English for example, the specifier precedes the head, and the
complements follow it.

For some languages, the X� view is problematic, because their word order is too
free to fit in the model. It is often claimed that those languages are non-configurational,
that is, they do not have a hierarchical structure. In the next chapter, I will discuss
Latin, and show that when the X� structure as posited by GB is less tightly connected
to surface order, hierarchy and free word order do not have to be contradicting.

Finally, important principles describe how the presence of words is licensed by the
presence selecting or case-marking heads. Subcategorization and the lowest X�-rule
interact as follows: briefly speaking, everything (say a noun phrase) that occurs in a
sentence must be there because something else, say a verb, selects for it; and everything
can be selected at most once.

9-5 principle: theta criterion. Every maximal projection in an argument or spec-
ifier position must be subcategorized for by precisely one lexical head.

*

The presence of NPs is further restricted; each noun phrase must have a case, and this
case is assigned by its environment.

9-6 principle: case Ælter. Every NP must be assigned case.
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9.2 Movement and adjunction

Government-binding theory chooses to assume a rigid relation between structure and
word order, and describes word orders that do not conform directly to its projectivity
constraints through MOVEMENT. An example is the following. A sentence contains an
INFLECTIONAL PHRASE IP. The specifier of this IP is the subject of the sentence, and the
head has the category I or INFL (for inflection). INFL is sometimes an auxiliary such
as in (9.3), but in the majority of cases, it is just the verbal tense/agreement marker
(9.4a).

�IP �NP Frank� �I will� �VP �V poor� �NP Julia� �NP a coffee���(9.3)

a. �IP �NP Frank� �I -ed� �VP �V poor� �NP Julia� �NP a coffee���
(Frank poored Julia a coffee)

(9.4)

In the second sentence, the past tense marker -ed is attached to the verb poor. This is
traditionally done by LOWERING the tense marker to the V node, resulting in (9.4b), or
alternatively by RAISING the verb to INFL. In both cases, one gets a node of the form
�V �V ��I ��, or alternatively �I �V ��I ��, that does not correspond to the X� principle 9-4;
this is called adjunction.

b. �IP �NP Frank� �I �� �VP �V �V poor� �I -ed�� �NP Julia� �NP a coffee���
(Frank poored Julia a coffee)

(9.4)

9-7 principle: adjunction. The following non-X� rules are allowed under certain
conditions:

XP � XP; YP (phrasal adjunction)
X � X; Y (head-to-head adjunction)

Another example of movement in GB is the following refinement: the IP is contained
in a COMPLEMENTIZER PHRASE CP, whose head is of category C or COMP as in (9.5),
but in a yes-no question such as (9.6), the head will of the IP is raised to the position
of the C.

�CP �C that� �IP Frank will poor Julia a coffee��(9.5)

a. �CP �C �y/n� �IP �NP Frank� �I will� �VP �V poor� �NP Julia� �NP a coffee����
b. �CP �C Willy/n� �IP �NP Frank� �I �� �VP �V poor� �NP Julia� �NP a coffee����

(9.6)

Hence GB theory arrives at more than one structure for each linguistic expression.
The structures (9.4a) and (9.6a) are called the DEEP STRUCTURE or D-structure, and the
analyses (9.4b) and (9.6b) are called the SURFACE STRUCTURE or S-structure.

The difference between these structures is minimal; the movement operations that
transform D-structure to S-structure are said to be STRUCTURE-PRESERVING, and there
are very strict rules of what is allowed to move to what positions.
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So on the one hand these structures are almost identical, but on the other this notion
of transformation has consequences for (i) the readability of grammatical explanations
and (ii) their computational tractability. Therefore it is worth looking at whether the
literal movement from previous chapters can be used to obtain a version of the GB
theory that has only one of the two structures. This is done in section 9.4.

The complete scheme of the structural representations recognized in GB is drawn
in figure 9.1; the actual situation is that one structure is derived from the other through a
number of successive movement operations, so in a computational model, several more
structures may be constructed. Also, GB posits a form of derivation of the structures
that corresponds to the way the human brain constructs a linguistic expression—hence
the term generative linguistics. In this point of view it is essentially harder to look at the
opposite construction in a simple and elegant way—i.e. the perspective of the listener
or reader, who has to analyze an expression that is received as spoken or written text
without any given structure: GB parsing is a difficult and relatively underdeveloped
field of research.

D−structure

S−structure

           PF
(phonetic form)

         LF
(logical form)

movement

movementmovement

Figure 9.1: Structural representations in GB.

Chomsky et al. have recently developed successors of the GB theory (the MIN-
IMALIST PROGRAM, [Cho96]) that take away some of these problems, but are still
abundantly dependent on ‘movement’ in the sense of transformation of structures.
One of the differences is that structures are not moved but rather copied. Also, the
scheme of structural representations has been simplified, and a more direct path is now
suggested to connect PF and LF.
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9.3 Examples

The leading example in this thesis, a simple selection of sentences with so-called
RAISING VERBS1 in English, German and Dutch, is a good illustration of a fragment
of GB grammar that shows (i) the way universal principles and language-specific
parameters are used and (ii) how abundant use is made of movement constructions.

To make this a smooth story, I shall look, initially, only at two types of verb;
transitives and raising verbs. The latter already occurred in previous parts of this
thesis, but the term was not explained. In this simple account, the verbs can be given
the following SUBCATEGORIZATION FRAMES2

htransitive verbi : �1� NP� �2� NP�assign acc��(9.7)

hraising verbi : �1� NP� �2� IP�assign acc to subj�(9.8)

For clarity, and as done before, in tree diagrams I will give these verbs the categories
VT and VR, respectively. In GB, it would be sufficient to say that they have the category
V, and the subcategorization frames given above.

As said, these subcategorization frames license certain deep structures, without
specifying a particular order at the bottom of the verbal projections. To specify such
an order, one can give LINEAR PRECEDENCE specifications. For English, one can give
the very general parameter ELP, with an amazing amount of accuracy.

9-8 parameter: ELP. Complements in English follow their heads.

*

Hence, the familiar English structure in figure 9.2 is licensed. Note that the subject
plays a special rôle, since it is subcategorized for by the verb, but does not appear in
the bottom of the verbal projection, but under the IP. This is because it is not assigned
its case by the verb, but by INFL, and case can, roughly, only be assigned ‘downward’
in the tree structure.

The German case is similar; WGLP swaps the argument order as suggested in the
introduction; a resulting tree3 is in figure 9.3.

9-9 parameter: WGLP. Complements in West-Germanic languages precede their
heads, with the exception of the complements of C.

1The verbs called VR in this thesis are, syntactically speaking, only raising verbs in an analysis of Dutch,
and should not be confused with English raising verbs, such as to seem, in the GB literature. On the other
hand, they are called raising in Pollard’s HG program ([Pol84], chapter 10) too, motivated by semantic
properties.

2These frames are not presented as they usually are in GB theories, because I do not include a form of �

theory.
3This analysis is known as the base-generated analysis of the German verb phrase; other analyses contain

a verb cluster like the analysis of Dutch sketched below. Note that the IP might here (at the current level
of detail) just as well have been collapsed completely into the VP, making the subject VP-internal and
base-generated in the right position for subordinate clauses.
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*

In the German and English cases, the S-structure for relative clauses is nearly identical
to the deep structure, be it that the verbal inflectional suffixes are lowered to the verbs.

This is as far as underlying structure goes, without the need of transformations to
get to the surface order. A frequently occurring phenomenon is rightward EXTRAPOSI-
TION, discussed here for the Germanic VP. Sentence (9.9) disobeys the constraint that
complements in German precede the verb.

� � � daß Frank � Julia �i � verbot � Kaffee zu trinken �i(9.9)

The verb verbot is called an EXTRAPOSITION VERB, because the embedded VP Kaffee
zu trinken here is assumed to be obligatorily raised to a position right of the IP, by
phrasal adjunction �IP �IP � �VP ��, creating a position that did not exist in the D-structure.
This breaks the structure-preservingness suggested in the previous section, be it in a
way that is usually ‘approved’ by GB theorists.

*

The analysis of Dutch is, as before, more complex than that of German and English;

Frank see Julia coffeedrink

VR

NP

NP

VP

V’

VI

NP

IP

IP

I’

I

−ed
see−ed = saw

VP

I’

I

−

VT

Figure 9.2: D-structure for English
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here, head-to-head adjunction is required to form even the basic structure of the verb
phrase. Conventionally, an SOV structure like that of German is assumed; however, the
order of the verbs in Dutch is reversed w.r.t. the German analysis. This is most often
described by a process called VERB RAISING [Eve75]. So, the Dutch deep structure is
like that of German, but the S-structure is as in figure 9.4.4 Apart from equivalents
of the German extraposition verbs (9.11), there are so-called PARTIAL EXTRAPOSITION

VERBS [dBR89] that optionally allow only part of the embedded VP to be phrasally
right-adjoined to IP (9.12). For comparison, the standard cross-serial raising case is
repeated here in simplified schematic form as (9.10).

� � � dat Frank Julia � koffie �i� zag � drinken �i(9.10)

4An interesting alternative seems to me, but apparently not to the literature on Dutch sentential com-
plementation, to assume an SVO order and adjoin the objects to the right of [Spec, IP]. This corresponds
more closely to the analysis found elsewhere in this thesis, and has a number of advantages, namely that the
movement it involves is less anomalous, because it resembles movement to [Spec, CP].

Frank sehJulia Kaffee trink

VR

NP

NP

VP

V’

V’

NP

IP

IP

I’

I

−te
seh−te = sah

VP

I’

I

−en

VT

C’

C

daß

CP

Figure 9.3: D-structure for German
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a. � � � dat Frank Julia �i verbood � koffie te drinken �i
b. �� � � dat Frank Julia � koffie �i � verbood � te drinken �i

(9.11)

a. � � � dat Frank �i probeert � Julia koffie te geven �i
b. � � � dat Frank � Julia �i � probeert � koffie te geven �i
c. � � � dat Frank � Julia koffie �i � probeert � te geven �i

(9.12)

Partial extraposition is one of many problematic cases that lead to various highly
involved proposals for the description of Dutch.

Frank zie −deJulia koffie drink−en

VR

NP

NP

VP

V’

V’

NP

IP

IP

I

zie−de = zag

VP

I’

I VT

C’

C

dat

CP

I’

VT

I

VR

VR

VT

I

Figure 9.4: S-structure for Dutch
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9.4 Replacing S-structure with literal movement

I now sketch how literal movement may be used to implement a theory or grammatical
fragment within the GB program in a way that is as conservative as possible—i.e.,
respecting the most possible concepts of GB theory. The most important motivation
for such a sketch is that grammars with a bounded feature domain (section 7.1) and
literal movement are known to guarantee, at least from a formal perspective, tractable
computer analysis.

Of course, implementation, weak and strong generative capacity of GB descriptions
have been studied in the literature. Most such approaches rely on the concept of
GRAMMAR CODING, which is, informally speaking, to code the relevant features of
the grammatical categories into the set of nonterminals of an underlying grammar, as
explained in remark 7-7 on page 136. In particular, KRACHT [Kra95] and ROGERS

have independently developed formal elaborations from which it can be concluded
that in the absence of head-to-head movement (see below), variants of GB can be
coded into context-free grammars. The relevance of what is done in this section is
twofold: (i) grammar coding is a notion that is, initially, of formal significance only,
because the resulting coded grammars have nonterminal spaces of intractable sizes;
(ii) it seems that restricted forms of head-to-head movement are harmless; while the
literal movement characterization of this section is less general and lacks detail, it
provides hints as to how one might capture some of these acceptable exceptions.

A principle of LMG descriptions independent of the motivating linguistic frame-
work, an axiom so to speak, is that the terminal yield of a constituent is generated
at its deep-structural position. The LMG clusters provide a way to carry this yield,
which may be any tuple of terminal strings, to its landing site or sites. Along with this
terminal string however, a number of features of the constituent may need to be carried
along to be matched against constraints on the landing site. The expected benefit of
using literal movement in this way is that the number of features to be ‘carried’ in this
way will be less5 than in the more traditional approach to grammar coding (of GB
or unification-based theories), in which a constituent is generated at its final landing
site, and all its features are carried to, or even structure shared with, its deep-structural
position.

The following types of movement are of essential relevance; assume a parametrized
set of GB principles T that describes a fragment of a language, the types of movement
in which are limited to the following;

1. Head movement, mostly subject-auxiliary inversion: the auxiliary is moved from
I to C.

2. Phrasal movement, mostly NP-movement;

(a) wh-movement and relatives Complete NP trees are moved to [Spec, CP].

5An important question to tackle next is how to automatically deduce from a grammar which features do
not need to be carried over long distances. There are numerous techniques for such dependency analyses,
and I will not discuss those here.
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(b) seems-raising NPs are moved from [Spec; IP] to [Spec, IP].

(c) Other categories, e.g. PP (disregarded here).

3. Head-to-head adjunction

(a) Lowering of inflection The inflectional marker is lowered to V by head-to-
head adjunction.

(b) Verb raising in Dutch

The first two types of movement, are strictly structure-preserving: the landing sites
are positions in S-structure that are already present in D-structure.

The LMG backbone for T will have some form of link between nonterminals and
category or feature specifications, presumably at the level of basic categories plus their
bar level, i.e. NP, V�, C, &c. Formally, take a number of basic categories, and for
each such category X, let N contain X0 � X, X1 � X� and X2 � XP. The terminals
will represent what is in the lexicon. For any possible clause R, the principles of the
grammar either license it, and yield a refinement in the form of a feature specification,
or refute it. The clause set P of the LMG is then the set of licensed clauses. One can
go into different levels of detail of this licensing operation, but I will here be especially
interested in the following: how many SURFACE CLUSTERS does each nonterminal get,6

what are these used for, &c. I am also interested in clusters of finite attributes with
little interaction (called feature buckets here) as suggested on page 159—these will
often be associated with the surface clusters.

1. subject-auxiliary inversion. This is a relatively simple case; this type of
movement is highly local. A technique similar to head-wrapping as in MHG is
sufficient here. So in the basic setup, each nonterminal Xi has at least three clusters L,
H and R, reading out the YIELD of the (traditional) S-structure as L–H–R, and where
H is the (lexical) head X. There will be two types of clause that embed IP into CP; a
‘normal’ clause7

C���� c� l i r� :- C��� c� ��� IP�l� i� r��

and one that is responsible for inversion:

C���� i� l r� :- C��� �� ��� IP�l� i� r��

Selection of which clauses apply in given contexts then depends on feature configura-
tions derived from other principles this account does not go into.

2. NP-movement. For this to be modelled in an LMG we must argue that each
node in D-structure can be “passed by at most one thread of wh-movement”, defined

6Note that the arity of a nonterminal symbol is not part of the definition of an LMG—but by convention,
LMGs will often use a nonterminal only with a fixed number of arguments.

7The appearance of � in the RHS of this clause is not beyond the capacity of simple LMG; it can be
circumvented by replacing each occurrence of � with a variable x and adding a nonterminal Empty with a
single production Empty����
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formally as follows: a landing site (filler) and its trace form a CHAIN. This chain is
said to PASS THROUGH a node if the node is on the shortest path between two nodes in
the chain. Now, what needs to be required is that through each node in the structure
(D or S, at this point equivalent), are passing BOUNDEDLY MANY chains.

This seems to be guaranteed, for the indicated types of movement, by variants of
the SUBJACENCY PRINCIPLE:8

9-10 principle: subjacency. Movement cannot cross more than one node of cate-
gory IP or NP.

Given this principle, a node n in a tree structure, and a type of landing site such as
[Spec, IP], the size of the LANDING DOMAIN of nodes of this type in the tree structure
that n could possibly be moved to, is bounded by a constant.9

It is now an easy step to provide some characterization for such landing sites.
For example, the nodes of type [Spec, IP] are divided into those that are immediately
above n, or those that have one ancestor labelled IP in between. Each of these finitely
characterized classes shall in general need to be assigned a surface cluster. Along with
this surface cluster, one shall need to reserve a “feature bucket” that can contain the
relevant features (e.g. if an NP is moved, the features relevant for an NP at its landing
site, except those employed for purposes of movement).

An argument against the claim that the number of movement chains ‘passing
through’ a given node is bounded often presents counterexamples such as (9.13)
[PS94]. Here, Sandy [Spec, CP] and Felix [Spec, IP] are classified differently; this
also applies to other examples I have found in the literature.

Sandyi� Felixj was hard for Kim to give �j to �i�(9.13)

3. Head-to-head adjunction. This third type is anomalous: the original head-
to-head adjunction version of verbal suffix lowering is not structure preserving: it
generates extra structure under V. There are two solutions to this. The first takes
account of the fact that this lexical ‘complex verb’ is often taken to be sub-structural.
An LMG analysis will then have to generate the affix at the V position, but will include
the features corresponding to the affix only in the head feature bucket, and not locally.
The status of the feature bucket is marked as +lowered. The second solution bans
lowering altogether and looks at solutions (of which there are several in the literature)
that look at versions of GB that consider raising only.

The phenomenon of verb raising in Dutch can also be given a non-structural
analysis, by raising verbs one embedded VP projection at a time, and concatenating
them to the right of the head of the parent VP, generating a NON-LEXICAL head cluster.

8The subjacency principle is subject to variation across languages; but the variants that differ from the
one for English (e.g. Italian, where IP becomes CP), do not seem to break the conclusions drawn here.

9Strictly speaking, additional principles need to be stated to guarantee that this works completely, such
as: within each domain of a bounding node IP or NP, movement always occurs to the highest node of a
given type.
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Conclusions to chapter 9

This chapter served, in the first place, to introduce principle-based grammar. A frame-
work like GB cannot be compared to the work on LMG and tuple-based formalisms
presented in parts I and II, because the latter do not provide fundamental linguistic ex-
planations. But as GB is a principled framework based on a notion of phrase structure
that stems from the study of context-free grammars, a theory can be developed that is
built on a tuple-based structural backbone. This is done in chapter 10.

An alternative line that was investigated briefly in section 9.4, is to use LMG as
a platform for implementing GB theory, with the particular property that S-structure
vanishes, to leave D-structure as the only structural representation.

Such a theory is more conservative than a direct formalization, as in chapter 10, of
the intuitions given by tuple grammars,but has the benefit that the results of ‘traditional’
research in generative linguistics can be transferred fairly easily to a framework based
on literal movement, with the additional benefit of, at least theoretically, tractable im-
plementations. Of course, these tractable implementations still have to be constructed,
and remain to be shown efficient in practice. Moreover, there is a vast amount of
details whose interaction with the proposed simplification of abandoning S-structure
needs to be investigated.

To conclude, one further remark is important to make. In this chapter I have looked
at S and D structure only, and the standard approach to talking about LF and PF does
not fit into the account based on literal movement. But as LF is derived only when
S-structure and D-structure are given, perhaps this does not have to be considered a
problem—one could think of that phase as post-processing, one could decide to do it
altogether in a different way (more standard PTQ style). Along the lines of reasoning
from chapter 7—successive reduction of the number of analyses—one could say that
the S/D-analysis filters out ‘crashed’ derivations, so in the end it is more economical
too. The same argument “for the time being, we will consider this an extra-syntactical
part of linguistic analysis” can be applied to BINDING THEORY, that also hasn’t been
discussed here.



Chapter 10
Free head grammar

The previous chapter gave a rather conservative approach to finding a principled
background for tuple grammars, by looking at how tuple-driven surface generation
can be used to support tractable implementations of GB theory. However, it was
one of the points of departure mentioned in the Prologue (conjectures H and J) to
avoid any design implications of an emphasis on the description of English, which is
present in GB as in many other theories with broad empirical coverage like HPSG
and LFG—in particular the important rôle played by a projective, left-to-right ordered
surface structure.

In this chapter, I take the more progressive approach of investigating the possibility
to provide a direct foundation for the use of tuple grammars. The investigation in this
chapter is based on Pollard’s HEAD GRAMMAR (HG), which can be thought of as
claiming that the position of the head in a phrase is a psychologically well-chosen
mark that could enable humans to split up the “strings” generated in their minds.
The FREE HEAD GRAMMARS presented here take the liberating effect of Pollard’s
generalization from concatenation to operations on headed strings a bit further, by
allowing (i) slightly more complex, but still head-oriented yield formation and (ii)
multi-rooted tree structures to achieve a greater flexibility in choosing key dependency
relations. While doing this, I aim at obtaining a theory that is perhaps not as broad in
coverage as GB theory, but has the potential to be elaborated to the level of detail of a
modern syntactic framework such as HPSG [PS94], and concentrate in particular on
the ability to parametrize very general properties of word order.

While this chapter makes use of HG to provide a principled background for LMG,
it also attacks some problems of head grammar. The full version of Pollard’s head
grammar lacks a claim of tractability, due to the presence of unboundedly deeply
embedded SLASH features. Furthermore, while head grammar is capable of local-
izing crossed dependencies in Dutch, it does not try to localize other long distance
phenomena (such as nominal gap–filler dependencies).

Hence another extension is proposed, to achieve complete localization of relative
clause dependencies: an optional relaxation of the notion of hierarchy, motivated by
the result proved in chapter 8 that if an MHG is capable of describing Dutch relative
clauses, it will necessarily describe these with a structure that looks “turned inside out”
with respect to traditional analyses. This attaching of the wh-relative clause not at its
“top” but at the wh-word it quantifies over is further motivated by the structures we
saw in examples of XG in chapter 6, which also had this link explicitly represented in
their graph-structured derivations. Both extensions to HG proposed remain suitable
for an implementation based on the tractable S-LMG formalism.

191
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10.1 Basic setup for a HG of English

HEAD GRAMMAR (HG) is a principled grammar framework that is tightly related to
GPSG, but makes use of head wrapping operations to enhance the device that generates
surface strings. After Pollard’s [Pol84], research on head grammar has focused on the
simplified version MHG that appeared frequently in parts I and II of this thesis, and
research on which is limited to formal language-theoretical results. Although MHG
and HG are weakly equivalent, some HG analyses have no strong equivalent in MHG.

To get started, I will define HG in its original formulation by Pollard, but glossing
over features that are not essential to this chapter, and adding some of my own. To be
precise, I make the following restricting modifications:


 a simplified, strictly extensional semantic component


 a slightly different view on Pollard’s CONTROL TYPES.


 a bounded feature space (no SLASH features)


 no ID/LP rules [GKPS85]

The additional features are defined separately and yield a version which I call FREE

head grammar (FHG), that has slightly more powerful yield formation operations.1

Every HG is an FHG. The key point of this chapter is to show how an unbounded
feature space and the ID/LP rules can be replaced with a combination of more free
yield formation, and later, with a more free attitude towards hierarchy and phrase
containment.

The principles of free head grammar

A (free) head grammar is, formally, a simple LMG whose clauses satisfy a long list
of properties. As in GB, some of these properties are UNIVERSAL PRINCIPLES, others
are language dependent PARAMETERS.

10-1 principle: features. The set of nonterminals N of an FHG is a finite feature
space whose elements are (partially) characterized by a list of feature specifications in
the style of GPSG [GKPS85], such as ��AUX� NUM PL� PERS 3RD�. Partial feature
specifications are used only informally, and specify sets of nonterminals.2

*

The following two principles express BINARY BRANCHING, and how the surface clus-
tering is limited to what one can build by associating with each node in a structural

1Such a free construction is also used in GERTJAN VAN NOORD’s dissertation [vN93], but differs on a
number of parameters, such as the following: the verb second operation in Van Noord’s analysis is not order
preserving (parameter 10-4).

2Alternatively, from a more implementational point of view, only part of the feature space may be
encoded into the nonterminals and the rest encoded into finite annotations as proposed in chapter 7.
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representation, in a systematic manner, a string divided into a LEFT CONTEXT, its
HEAD and a RIGHT CONTEXT. Furthermore, the only phrase containment relation is
head–dependent.

10-2 principle: tree principle. A sentence is associated with a tree structure (its
DERIVATION) in which each node is either terminal, or the parent of two other nodes,
one of which is the head, and one of which is the complement or dependent.

10-3 principle: surface clusters. Nonterminals in an FHG occur only 3-ary; all
clauses must be simple (definition 3-26), and of the form

A�t1� h1� t2� :- H�l1� h1� r1�� D�l2� h2� r2��

(head-complement clause) where li� hi and ri are variables, and t1� t2 are arbitrary terms
over these variables; or of the form (lexical clause)

A�u� v�w��

where u, v and w are strings.3 H is the HEAD DAUGHTER of A, and D is the DEPENDENT.
Consequently, FHG derivation trees are right-branching.4

In the non-lexical case, the head daughter H has a feature RULE, whose value is the
tuple �t1� t2�, uniquely determines the applied LMG clause.

*

The following are important parameters to be “switched on and off” ad lib. to vary the
strictness of the underlying clause system to levels between CFG and simple LMG.

10-4 parameter: order preserving. A rule is ORDER PRESERVING when if t1� t2
are as in principle 10-3, then in the term t1h1t2, the left-to-right order of l1, h1, r1 and
l2, h2, r2 is preserved; that is, no occurrence of r1 precedes one of h1, no occurrence of
h1 precedes one of l1, &c.

10-5 parameter: linearity and nonerasingness. The terminology of definition
3-26, except simplicity, which is required by definition, can be required parametrically
of FHG.

10-6 parameter: head-right adjacency. A rule is HEAD-RIGHT ADJACENT IN ITS

HEAD if t2 � r1t�2. A rule is HEAD-RIGHT ADJACENT IN ITS DEPENDENT if either t1 or t2

contains the subterm h2r2.

3This is a terminal production in the structural sense, but allows the clusters generated under a head to be
more than a single terminal symbol. The reason for allowing u and w to be nonempty, i.e. allowing a lexical
item to be split up, is to allow e.g. for Dutch verbs like aanbieden, whose prepositional prefix is separated
from the verb under movement, to be described (u = aan; v = bieden). The lexical entry for aanbieden as
to offer something has w � �; the entry meaning to offer to do something will have w � te, equivalent to
the English infinitive marker to. See (10.18) for an illustration.

4Note that right-branching in the structure poses no restrictions to the surface order.
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*

10-7 deÆnition. An FHG is a HEAD GRAMMAR (HG) if it is linear, non-erasing,
order preserving and head-right adjacent in its head. A head grammar is MODIFIED

(that is it corresponds to an MHG) if it is also head-right adjacent in its complement.

The following six clause types then remain for HG;5 a modified HG will only use
HC, CH and HWL.6

HC A�l1� h1� r1l2h2r2� :- H�l1� h1� r1��D�l2� h2� r2�� (head-complement)
CWR A�l1� h1� l2h2r2r1� :- H�l1� h1� r1��D�l2� h2� r2�� (compl. wrapped right)
HWL A�l2l1� h1� r1h2r2� :- H�l1� h1� r1��D�l2� h2� r2�� (head wrapped left)
HWR A�l2h2l1� h1� r1r2� :- H�l1� h1� r1��D�l2� h2� r2�� (head wrapped right)
CWL A�l1l2h2r2� h1� r1� :- H�l1� h1� r1��D�l2� h2� r2�� (compl. wrapped left)
CH A�l2h2r2l1� h1� r1� :- H�l1� h1� r1��D�l2� h2� r2�� (complement-head)

10-8 principle: head feature convention. The feature specifiers are divided into
two groups: HEAD FEATURES and NON-HEAD FEATURES. As a rule, all features, except
CON, RULE and COMP are head features. Parametrically, a limited set of additional
features may be allowed as non-head features.

10-9 principle: selection. A finite domain of CONTROL TYPES is constructed on
the following principles:

1. A type has an ORDER

2. There is a fixed finite set of order 0 types, including at least D (determiner), N
(noun) and V (verb).

3. A type of order i � 1 is a tuple �t1� t2� where t1 is a type of order i and t2 is a
type of order less than or equal to i.

4. The order of a type is not to exceed 3.

The categories A, H and D from definition 10-3 satisfy the following: there are control
types t1 and t2 such that one of the following schemes is satisfied:

H � �CON �t1� t2�� �� �� COMP ��(10.1)

A � �CON t2� �� ��

D � �CON t1� ��

H � �CON t� �� �� COMP ��(10.2)

A � �CON t� �� �� COMP ��

D � �CON �t� t���MODIFIER� ��

5Pollard’s original formulation speaks of twelve forms, but I have chosen to consider only those rules
where the first item on the RHS is the head daughter.

6The identifiers on the left are abbreviations for the tuples �t1� t2�; e.g. CWR � �l1� l2h2r2r1�.
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where �� �� �� �� � are feature specifications, and � and � contain only non-head
features.

*

Although I will not be concerned with semantics, a very strict correspondence between
semantics and surface order generalizations plays a rôle in the control type design of
head grammar, so a brief definition of semantic interpretation is in place.7

10-10 principle: interpretation. Each control type t is associated with a SEMANTIC

TYPE ��t�� where

1. A type is constructed as usual from the basic types e and t, and the function
operator �. Type expressions are right-associative, that is when we write
T1 � T2 � T3, we mean T1 � �T2 � T3).

2. If ��t1�� � T1 and ��t2�� � T2, then ���t1� t2��� � T1 � T2.

3. The semantic type for a basic category does not need to be a basic type.

Each lexical clause specifies an interpretation in the form of a �-expression extended
with boolean operators �, �, &c. as usual in an (extensional) PTQ setting [Jan86].
Parametrically, these expressions can be required to be extensional.

For a head-complement clause, the semantic interpretation of parent node A is
obtained by applying the meaning of the head H to that of the complement C.

*

This concludes the core principles of head grammar as I will present it here. The list in
figure 10.1 summarizes the control types I will be concerned with, and their associated
semantic types. What is called N0 elsewhere in this thesis is represented here by the
type D0. There is no distinction between the levels V0 and C. A raising verb, unlike in
other parts of this thesis, selects for an intransitive phrase to build a transitive phrase.

Parameters for English

A simple fragment of English is now specified in a few more statements, saying which
yield formation operators are to be used. In principle, complements in English follow
their heads, but the heading phrase may contain some ‘right context’; e.g. the transitive
phrase convince to leave should wrap in its object to the right of its head convince, but
left of to leave.

An exception to this default operation is the subject, which precedes the intransitive
phrase that selects for it, except when a sentence shows subject-auxiliary inversion. So

7Definition 10-10 is stricter than Pollard’s interpretation principle, which distinguishes two semantics
operations in addition to functional application: functional composition and equi. Pollard makes use of
these different classes to capture word order generalizations, but as he points out, there are anomalous cases.
These get worse in a language like Dutch, therefore I chose to encode these operations lexically. Since there
will be practically no semantics in this chapter, this definition serves merely as an indication.
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control type name and semantic type
NC � N common noun

e � t
D0 � D determiner phrase (noun phrase)

�e � t� � t
DN � �NC�D0� determiner

�e � t� � �e � t� � t
V0 � V saturated verbal clause

t
VI � �D0�V0� intransitive verb or phrase

��e � t�� t� � t
VT � �D0�VI� transitive verb or phrase

��e � t�� t� � ��e � t� � t�� t
VA � �VI�VI� auxiliary or modal verb (subject to subject raising)

���e � t�� t� � t�� ��e � t�� t�� t
VR � �VI�VT� raising verb (subject to object raising)

���e � t�� t� � t��
��e � t�� t� � ��e � t� � t�� t

Figure 10.1: Basic control types

I conclude with the following, extremely simplified, parameter for English, and refer
to [Pol84] for a more sophisticated analysis of English verb constructions. A further
elaboration concerned with relative clauses is included in this chapter.

10-11 parameter: English yield formation. Subjects in English precede their
heading phrase. All other complements in English follow their heads, but precede the
right context of the heading phrase.

N � �RULE �CH � CWR��(10.3)

N � �CON VI� �INV� � N � �RULE CH��(10.4)

An example derivation tree is shown in figure 10.2; note that instead of displaying
tuples, a more lean notation is used that separates the strings generated at each node
into three clusters using dots (�). This is further reflected in the following: whereas for
the formal derivational interpretation of LMG I would have written

� V0�Frank� saw� Julia drink coffee��(10.5)

I prefer here to think of the HG triples as strings with possible insertion points left and
right of their head. The result is a relation � more like its context-free counterpart.

V0 � Frank � saw � Julia drink coffee(10.6)
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10.2 Sentential structure of Dutch

The price of the psycho-linguistic motivation of head grammar, even in the free form
defined here, is that it substantially restricts the effect of dividing the yield of a
nonterminal into clusters with respect to what is allowed in arbitrary LMG. So it is
now left to show that what can be described using this limited capacity is sufficient. As
a first step, I will now use head-driven clustering to generate the surface order of basic
Dutch sentential structure. Let the examples in this thesis suffice to show that although
[Pol84] contains an appendix with a small, isolated fragment of Dutch subordinate
clauses, it requires much more to make this adequacy really plausible.

This section will treat a bit more than the previous chapter on GB, but for the time
I will disregard (i) adjunction (such as adverbial modification) and (ii) long surface
distance nominal dependencies (topicalization, wh-dependencies and relative clauses);
these will get attention in the last section of this chapter. To get started, let’s reformulate
the minimal English fragment of the previous section, but for subordinate clauses only.

Basic raising and extraposition order

In Dutch, a verb taking an embedded verb complement is wrapped in left of the com-
plement’s head. In other verbal cases, all complements precede their heads (canonical
order is SOV). Determiner phrases correspond to the English order.8

N � �RULE �CH � CWR � HWL��(10.7)

8The CWR rule is used for determiners because in section 10.4, a relative clause is attached to the
determiner and moved into its right context.

·saw·Julia drink coffee ·Frank·

·saw·

·Julia·

·drink·

·coffee·

·coffee·

·drink·coffee

·saw·drink coffee

Frank·saw·Julia drink coffee

··

V0

VI

VI

VT

VT

VR

D0

D0

D0

DN N0

Figure 10.2: English FHG analysis.
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�CON �VA � VR�� STYPE SUB��RAISING� � �RULE HWL�(10.8)

�CON �VI � VT�� STYPE SUB� � �RULE CH�(10.9)

�CON DN� � �RULE CWR�(10.10)

�CON �VI � VT � VA � VR�� � �COMP STYPE SUB�(10.11)

This set describes basic cross-serial verb order without the extraposition verbs from
the previous chapter, in a way closely resembling that of the MHG in 3.2, except that
the head is now a separate cluster. The following are examples of underlying LMG
clauses licensed by parameters (10.7–10.11).

VR�+RAISING� PERS 3RD�NUM SG���� zag� ���(10.12)

VT�STYPE SUB��l2l1� h1� r1h2r2� :- VR�l1� h1� r1�� VI�l2� h2� r2��(10.13)

The following is an example of a derivation using these clauses.

VI�STYPE SUB� � � zwemmen �(10.14)

VT�STYPE SUB� � � helpen � zwemmen by (10.8)(10.15)

VI�STYPE SUB� � Julia � helpen � zwemmen by (10.9)(10.16)

VT�STYPE SUB� � Julia � zag � helpen zwemmen by (10.8)(10.17)

“saw � help Julia swim”

Now I proceed to extraposition as discussed in 9.4. Two features, RAISING and EXTR,
indicate whether a verb allows for the raising or extaposition constructions, or for both.
The strict extraposition verb verbieden is an example of a “complex” lexical entry, i.e.
one that does not just have a single word in the head cluster, but has, in its right context,
the infinitive marker te.

VR��EXTR��RAISING� PERS 3RD�NUM SG���� verbood� te��
“disallowed to”

(10.18)

Applying the raising rule (10.13) would yield the incorrect sentence (10.19a); the
correct version is (10.19b). To model this, an FHG rule EXTR, that is not one of the
six wrapping and concatenation rules, is convenient.9

a. �� � � dat Frank �VI Fred Julia � verbood � te helpen zwemmen�
b. � � � dat Frank �VI Fred � verbood � Julia te helpen zwemmen�

“� � � that Frank did not allow Fred to help Julia swim”

(10.19)

EXTR A�l1� h1� l2r1h2r2� :- H�l1� h1� r1�� C�l2� h2� r2�� (extraposition)

�CON �VA � VR�� STYPE SUB��EXTR� � �RULE EXTR�(10.20)

9Convenient, but not necessary, for the infinitival marker te can also be modelled as a verbal category,
which is done by Pollard for the analysis of English; it does seem to make less sense for west-Germanic
languages; personally I find it stylistically infelicitous to assign categories to small things such as markers,
especially there where surface clustering provides a more “lean” model, in which a verb like teach gets a
lexical entry in which it reads teach � to.
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However, this rule is reasonably well-behaved, since it is order preserving and head-
right adjacent in its complement.

A place where at first sight, order preservingness seems to be difficult to maintain,
is declarative and interrogative sentential forms in Dutch. To model verb second, there
are two options; the easiest, but least principled is to forget order-preservingness, and
add rules that form a V0 from a VI by moving the head verb to initial or second position
(this is what is done in [vN93]).

An alternative option that respects order preservingness however seems more
defendable on a principled basis, and is supported by the head feature convention,
which claims that the STYPE feature is present on all the verbal projections anyway.
The main verb is prefixed already at the rule that constructs the VI from the higher
VT/A/R. Not only are the rules used order-preserving, but they happen to even fall
within the standard six-pack of strict HG rules.

�CON �VT �VA � VR�� STYPE �DECL � QUES�� � �RULE HC�(10.21)

�CON VI� STYPE DECL� � �RULE CH�(10.22)

�CON VI� STYPE QUES� � �RULE CWR�(10.23)

The following simple examples are sufficient to check how these rules work.

VT�PERS 3RD�NUM SG����dronk� ���
“drank”

(10.24)

VI�STYPE SUB� � koffie � dronk �(10.25)

V0�STYPE SUB� � (� � �dat) Frank koffie � dronk �(10.26)

VI�STYPE DECL/QUES� � � dronk � koffie(10.27)

V0�STYPE QUES� � � dronk � Frank koffie (?)(10.28)

V0�STYPE DECL� � Frank � dronk � koffie(10.29)

This concludes a fairly indisputable basic analysis. Now let’s look at how the analysis
may be extended to a further level of sophistication. This is no longer straightforward.

Extended coverage and problems

The phenomena of partial extraposition and inverted verb cluster ordering often pose
problems to a syntactical analysis because they force “flexible” application of the
principles. The same happens in the current FHG analysis. Recall the examples of
partial extraposition from the previous chapter:

a. � � � dat Frank probeerde Julia koffie te geven
b. � � � dat Frank Julia probeerde koffie te geven
c. � � � dat Frank Julia koffie probeerde te geven

“� � � that Frank tried to give Julia coffee”

(10.30)
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Although (10.30b) already raises some question marks for some Dutch speakers, it
is generally accepted as correct. The problem is that proberen (te) seems logically
to be of type VA that takes an intransitive phrase as its complement, to yield a new
intransitive phrase. But such a complement VI would be split up for example as
Julia koffie � laten � drinken; so there is no way to let the verb probeert
end up between Julia and koffie. The only solution that seems to work is to give
proberen a second control type �VT�VT�. But there may be Dutch speakers who
approve of higher “types” for proberen: in sentence (10.31), hun voer te leren uitdelen
would already be ditransitive.

??� � � dat Frank Julia de dieren probeerde hun voer te leren uitdelen
“� � � that Frank tried to teach Julia to give the animals their food”

(10.31)

As to inversion of the order in verbal clusters, this seems to be unproblematic in the
absence of ADVERBIAL MODIFICATION, which is postponed to section 10.4.

For verbs that allow inversion, one can simply replace the rule HWL that wraps in
the head verb to the left of the embedded verb, to HWR that wraps it in to the right; cf.

a. Julia koffie � wilde � zien drinken
b� Julia koffie drinken � wilde � zien
c. Julia koffie drinken zien � wilde �

“wanted to see Mary drink coffee”

(10.32)

In the presence of modification, these phenomena lead to problems that are not straight-
forward to solve; in the following sentences, the modifier between square brackets must
intervene a string that is fully contained in the left cluster of the modified constituent,
and can hence according to the principles not be interrupted. Sentence (10.33b.) pro-
vides evidence that a type raising like proposed for partial extraposition verbs will not
solve the issue here either. A restriction to what types of verb can be sequenced “in
the wrong order” is infeasible too, cf. (10.33c.). A possible solution, but also with its
problems, may be to allow non-lexical strings to be produced in the head cluster.

a. � � � dat Patijn de burgers [voor 16 februari] opgeroepen � wilde � hebben
te stemmen
“� � � that Patijn wanted to have [called the citizens to vote] before the 16th of
February”

b. � � � dat Patijn het comité de burgers [niet] verleiden � liet � tegen te
stemmen
“� � � that Patijn did not let the committee seduce the citizens into voting against”

c. � � � dat Frank Fred Julia [niet] zwemmen helpen � zag �
“� � � that Frank did not see Fred help Mary swim”

(10.33)



10.3. Sentential structure of Latin 201

10.3 Sentential structure of Latin

LATIN is known as a language with a highly free word order; in GB theory, one often
talks of a NON-CONFIGURATIONAL language, because attempts to cast a language like
Latin into an X� framework seem to fail, and one then reverts to a theory that does
not posit an X� schema. But with strict surface order, one then also throws out GB’s
notion of hierarchy. Other arguments for the freeness of Latin word order proceed
along similar lines—incapacity of currently known descriptive mechanisms.

Nonetheless, even a language like Latin has a number of indisputable, very global
constraints on word order, such as the property that words of the main clause cannot
be inserted between those of a subordinate clause; furthermore, word order has been
shown to depend strongly on pragmatic factors. In a completely non-configurational
account of Latin, it is difficult to see how such constraints and factors should be
expressed. Finally, a non-configurational analysis does not seem to lend itself well for
automatic processing. A substantial overview, and arguments that Latin is not a free
word order language, can be found in PINKSTER [Pin90], chapter 9.

This section will show that in the free form of head grammar of this chapter, large
amounts of Latin surface order can be described while maintaining a deep structure
that is equivalent to that of languages like English and Dutch. Because FHG extends
the projective capacities of an X� schema only very mildly, this seems to indicate that
there is an unexpectedly large benefit in relaxing the constraint of projectivity. I will
look, very globally, at what relationships occur if one assigns headed strings to the
nodes in a Latin dependency structure. This has the following implications:

1. For a node in the dependency structure, this means that the words in the de-
pendency cluster it dominates must together consist of a head and two contin-
uous substrings of the input. Since the dependency structure of Latin is fairly
indisputable,10 this property can be empirically checked.

2. In an analysis such as in FHG, where a head takes its dependents consecu-
tively like in X� syntax, it must be studied in which orders a head can take its
complements and optional dependents.

To facilitate this analysis, I will take a step back and leave out the formal designations
in terms of features, and merely look at how dependency and surface cluster triples
generated by head operations interact.

Tendency versus rule

In contrast to modern West-Germanic languages, Latin has very few strict rules, but
there are some. One of these is the restriction on subordinate clauses mentioned above;
this seems to be a strictly context-free constraint. Another is that in a prepositional

10Perhaps with the exception of the NP/DP distinction.
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phrase, when spelled out in a sentence, at least one element of the PP must immediately
follow the preposition. Here are some data.

a. magna cum laude
b. cum magna laude
c. � magna laude cum
d. has miseras, � � � , ad inferras
e. ??per multum arenosos rivos

(10.34)

The most general constraint, allowing the poetic example (10.34d), could be stated as

The rule combining a preposition with its complement noun phrase, either
puts the head noun in the the right context, or insists otherwise that the right
context is nonempty. Every rule attaching a PP to a larger phrase is head-right
adjacent in its complement (the PP).

(10.35)

This is the first illustration of an important difference between Latin and modern
languages: the examples in which the head noun appears before the preposition,
are judged more or less ‘difficult’ according to the status of the word immediately
following the preposition. Whereas modern languages have evolved to strictly forbid
difficult cases, Latin is of a more lenient nature. An underlying structural mechanism
would preferably be one that generates all possible structures, including very poetic
ones, but allows for this level of difficulty to be expressed formally in terms of which
head-driven operations have been applied.

Other similar examples, discussed in more detail in [Pin90], where Latin has
a strong tendency for a certain order, while that choice is compulsory in modern
languages, are (i) the position of causal subordinate clauses (tendency to follow the
verb) versus causal adverbial modifiers (free); (ii) adverbs have a tendency to appear
immediately next to the verb they modify (iii) some adjectives whose semantic contents
is determiner-like have different word order properties.

This concludes the concrete discussion of these tendencies themselves; henceforth
I will be interested solely in the most general possible word orders; these can obviously
not be specified in the way they were for English and Dutch: giving a single rule label
for certain classes of words. Rather, more general properties of these rules, such as
order preservingness and head-right adjacency need to be varied over different types
of construction.11 In this way, one gets a picture of the properties of one of the most
free forms of word order, and thus one gets close to investigating universal minimal
principles of human surface generation.

A brief empirical analysis

As before, the analysis I give here will concentrate on verbal complementation. I
will give a number of examples, (10.36) taken from [Mel88] and the others from

11It is not unthinkable that a deeper analysis than given here will conclude that this can, due to the
graduality of good and bad word order, only be done in a stochastic sense.
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[Pin90], which are all used as examples “of the worst12 kind”, and then look at how
the full verb phrases in the sentences can be obtained by successively adding the
SATELLITE PHRASES, that is either complements or non-obligatory dependents, using
the operations allowed in an FHG clause. It will turn out that a degree of freedom is
required in the order in which satellites are bound to the head phrase.

silvestrem tenui musam meditaris avena 

     rural          thin        music          play      reed−pipe

‘‘...(Tityrus, you...) are playing rural tunes on a thin reed−pipe’’

   F−ACC−SG    F−ABL−SG   F−ACC−SG         2−SG          F−ABL−SG

(Vergil, ??) [Mel88]

(10.36)

Sentence (10.36) can be constructed either by first wrapping tenui � avena �
around meditaris, and then wrapping in silvestrem � musam � . These opera-
tions would be order preserving. If however preference is given to taking obliga-
tory complements first (assuming that meditaris selects for an object), a non-order-
preserving operation is needed: first, silvestrem � musam � is wrapped around
meditaris, to form silvestrem � meditaris � musam, and then while wrapping
in tenui � avena � , the right context musam is moved leftward over meditaris.

valui poenam fortis in ipse meam

 ‘be’  punishment strong  to   self         my

‘‘I have been brave, to my own disadvantage’’        (Ov. Am. 1.7.26)

 1−SG     F−ACC−SG   NOM−SG    M−NOM−SG  F−ACC−SG

(10.37)

Sentence (10.37) shows the opposite effect. If the PPpoenam � in � meam is wrapped
in first, it is merged into two disjoint clusters, while it is broken up into three clusters
in the sentence, i.e., there is no successful derivation. If ipse and fortis are wrapped in
first to form ipse � valui � fortis, there is a successful derivation, but one that
is not order preserving.

grandia per multos tenuantur flumina rivos

   great  through  many    be reduced    rivers      brooks 

‘‘Great streams are chanelled into many brooks’’       (Ov. Rem. 445) 

N−NOM−PL   +ACC   M−ACC−PL                          N−NOM−PL  M−ACC−PL

(10.38)

12It should be born in mind, however, that it is also Pinkster’s objective to show that Latin word order is
not free.



204 Free head grammar

Example (10.38) is head-constructible only if multos and rivos in the PP are split; i.e.
the PP is derived as multos � per � rivos or rivos � per � multos. The rule
binding the PP to the verb phrase will insist on putting either left or right context of the
preposition immediately right of the preposition. This sentence is another example of
a construction that is inherently non-order-preserving.

quem tibi candidi primo restituent vere Favonii ... beatum

   who  you    dazzling     first         return     spring   Zephirs          happy

‘‘whom the dazzling west winds will give back to you in a happy
      state... ... at the beginning of the spring’’       (Hor. C. 3.7.1−3)

 M−ACC−SG   DAT−SG                    N−ABL−SG                    N−ABL−SG  M−NOM−PL      M−ACC−SG

(10.39)

The very symmetrical, multiply embedding sentence (10.37) gives another hint: the
components of the subject phrase candidi � Favonii � appears in the middle of
the left and right context of the head verb restituent. This implies that while the
dependents can be attached in almost any order, the subject can not be attached last,
as is conventionally done in analyses of modern configurational languages.

Conclusions

The type of analysis given here, i.e. a look at (the most excessive cases of) what is
possible in word order formation, is hardly ever found in the literature. The majority of
other studies of word order in Latin seems to investigate what the prosodial, rhetorical,
&c, effect of order variation is, without having a notion of how to talk about word or
phrase order, if phrases can be highly discontinuous.13 One of the aims of the study in
this chapter is to provide a concise description of the general situation in such a way
that such motivations for certain word order preferences can be formulated at a higher
level of formal adequacy.

The analysis I gave is insubstantial, but it does seem to indicate that free head-driven
surface generation is capable of generating a large amount of Latin word orders, and
that there is a trade-off between restricting the order in which complements and optional
dependents are bound to a head, and the strictness of the principles specifying which
yield formation operations are allowed. It is on purpose that I have looked at a small
selection of very free word orders—more prosaic Latin sentences will fit into the FHG
operations much more easily, and can lead one to pursue preliminary conclusions that
obstruct an investigation of the more difficult cases. Of course, investigating simpler
sentences based on the minimal framework thus obtained is nonetheless clearly the
next step to take.

A preliminary conclusion is that there is a preference for attaching adverbial
modifiers after the complements, including the subject. This is supported both by the

13A similar remark is made in [Pin90].
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examples and the idea that adverbial phrases (and likewise for optional dependents
such as the ablative phrases in the examples) have a tendency to appear close to the
verb they modify. The only exception is example (10.36) in which final attachment
of the ablative phrase tenui avena is in conflict with order preservingness. This is
not surprising, since the occurrence of tenui so early in the phrase seems to mark it
with an exceptional amount of stress. Another idea that needs further investigation is
whether head-right adjacency w.r.t. the complement, i.e. the property of complement
daughters to be split up only into two strings, is perhaps a property of higher weight
than order preservingness.

Other analyses of Latin [Ros67] complement order have been made in terms of
the scrambling process that has been argued to apply to the German verb phrase. The
remarks in example 8-11 (page 171) hold equally well for Latin: it is worthwhile to
investigate the possibility that the freedom of word order is restricted in such a way that
mildly configurational formalisms such as loosely interpreted XG and tuple grammars
can produce all the allowed orders (while giving strongly adequate analyses). This
does seem to be supported by the fact that tuple grammars can not describe unrestricted
scrambling, but I have not found any examples of Latin constructions that can’t be
dealt with using the 3-tuple based operations of FHG!
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10.4 Localization of relative clause dependencies

The Latin sentence (10.40) that was already mentioned in the introduction introduces
no difficult bindings. The phrasequas Oriens habuit � puellis � is wrapped
around praelata, the resulting phrase right-concatenated to altera.

...altera  quas  Oriens habuit praelata puellis 

the other     that     the East    had      preferred     girls

‘‘...the other a frequent winner of the Miss Middle−East contest’’
(Ov. Met. IV 56.)

F−NOM−SG  F−ACC−PL                                      F−NOM−SG    F−ABL−PL

(10.40)

It does, as said in the introduction, introduce a so-called DOUBLE DEPENDENCY. The
word quas depends depends on both puellis and habuit. This observation, together
with the strong generative capacity construction for MHG in section 8.2, naturally
leads to the idea of implementing a tree structure in HG that allows for multiple heads.

While Latin provides good examples because of its rich morphology, I will con-
centrate here on English examples, because the distinction noun/determiner in Latin
is somewhat cumbersome. The English analysis will not have multi-headedness, but
a more general form of MULTIPLE DOMINANCE; the determiner in the matrix clause
will be the head of a D0, and the complement of a relative pronoun, at the same time.
Consider the sentence

Frank saw the man (that/whom) Julia loved(10.41)

The accusative morphology of whom shows that the object dependency is present
here too, and since case is a head feature, I propose an analysis in which the relative
that/whom is the head of the object in the embedded clause. For this purpose, I
introduce a new control type DD for relative pronouns (without a semantic type for
the time being). The proposed analysis of sentence (10.41) is shown in figure 10.3a.
As usual, vertical lines denote head relations; while drawing the trees in this section it
was unavoidable to put some complement arrows left of the head.

The grammatical principles put forward in section 10.1 need to be changed to allow
for these types of analysis; I will not go into formal details here, since the proposal is
of a highly tentative nature; rather will I attempt to sketch why it is feasible, and what
its benefits could be.

Of central importance is the following relaxed notion of how dependency relations
correspond to derivation trees.

10-12 principle: revised tree principle. The underlying structure of a sentence
is always a tree; however, the tree need not be binarily branching, a node may be a
dependent of a daughter node, or the head of its parent.
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Figure 10.3: Multi-dominance relative clause analysis and the underlying LMG struc-
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*

The underlying tree structure for sentence (10.41) is shown in part b of figure 10.3.
There is an analogy between these intuitive and underlying structures and the derived
and derivation structures of a tree adjoining grammar—see the Epilogue, section E.2.

In such a version of FHG, where trees can be “turned upside down”, an ad-
ditional feature PARENT is needed which selects the parent node. In the standard
case, one has �PARENT matrix�; the two additional cases are �PARENT head� and
�PARENT complement�.

The yield formation principle 10-3 is rephrased to differentiate between the differ-
ent values of the PARENT feature; it remains the same for �PARENT matrix�; nontermi-
nals that have �PARENT head�complement� have 4 surface clusters as opposed to 3,
because they act as the context to their parent node, and thus the parent node needs to
be wrapped into such a node, instead of the other way around.

10-13 principle: revised yield formation. Let order preservingness (10-4) and
head-right adjacency in complement be given.

Let A � �PARENT p� RULE �t1� t2��. Then


 If p � matrix, then the underlying grammar contains, as in 10-3, the clause

A�t1� h1� t2� :- H�l1� h1� r1�� C�l2� h2� r2��


 If p � head and t1 � s1l1s2; t2 � s3r1s4,

A�p1s1� s2p2� p3s3� s4p4� :- M�p1� p2� p3� p4�� C�l2� h2� r2��

where A is the head of M; or in case that A is not a head or dependent, but a
TERMINAL ROOT:

A�s1� s2� s3� s4� :- C�l2� h2� r2��


 If p � complement, the rule applied is undefined (depends on parameters such
as head-right adjacency).

The situation �PARENT complement� is highly complex, and intentionally left open;
in the case of a relative clause, features will mark special nature of the pronoun that,
which causes the complement (noun) to be wrapped in between the determiner (the)
and the relative clause with the complement relative pronoun that on its left.

The semantic interpretation principle is modified accordingly; the interpretation of
a phrase with �PARENT head� for example is a lambda expression that abstracts over an
expression of the type of the missing head.

*

Thus, relative clause dependencies can be localized, banning completely the notion of
structural long-distance dependency. A similar mechanism can be used for adjunction:
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Figure 10.4: Adjunction.

an adjunct is a second head to the phrase it is adjoined to; this situation is sketched
in figure 10.4. This would eliminate optional dependents, simplifying the feature
system and eliminating alternative (10.2) of the selection principle. There is, however,
a difference between the cases of relative clauses and adjunction. A relative clause
analysis introduces a situation in which a node is dominated by two nodes, whereas
adjunction can occur unboundedly many times. This makes it hard to guarantee that
the underlying LMG remains finite. I expect that such a model of adjunction can
overcome some of the problems in describing the difficult Dutch sentences at the end
of section 10.2.

Scope readings

The tree inversion paradigm is good for more than modelling adjunction and relative
clause attachment. Figure 10.5 shows two possible LMG backbones for the FHG
analysis of sentence (10.42), which by English native speakers seems to be given two
scope readings: one where one doctor visited every patient, the other where there can
be more doctors, but every patient was visited by one doctor.14

A doctor will interview every patient(10.42)

The different scope readings are obtained from the two different structural analyses by
use of the following rule: the semantic interpretation of a node is obtained bottom-up
in the underlying structure, and at each individual node, a normal form is computed
w.r.t. the familiar � and � reduction, and the following reduction rule:

Lift� �x� �� � �P�y� � � � ��� P�y� �x� �� � �� � � �� when P is free

I.e., an existential quantification over a term containing a predicate applied to a lambda
expression, the predicate and lambda expression are lifted over the existential quantor.

14For ease of presentation, will interview has been contracted to a single VT in the figure; modelling
auxiliaries properly is not a relevant issue here and requires event semantics.
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The interpretation for the D0 is derived in the traditional extensional fashion as
follows:

��N0�patient��� � �x� patient�x�(10.43)

��DN�every��� � �N1� �N2� 
x� �N1�x�� N2�x��(10.44)

��D0�every patient��� � �N� 
x� �patient�x� � N2�x��(10.45)

��N0�doctor��� � �x� doctor�x�(10.46)

��DN�a��� � �N1� �N2� �x� �N1�x� � N2�x��(10.47)

��D0�a doctor��� � �N� �x� �doctor�x� � N2�x��(10.48)

The transitive verb has the high type announced in figure 10.1:

��VT�will interview��� � �D2� �D1� D1�x� D2�y� interview�x� y�(10.49)

The derivation for the uninverted structure is unsurprising:

��VI�will interview every patient���(10.50)

� �D� D�x� 
y� �patient�y� � interview�x� y��

��V0�a doctor will interview every patient���(10.51)

� �x� �doctor�x� � 
y� �patient�y�� interview�x� y���

but in the inverted structure, the Lift� rule is triggered:

��V0�PARENT head��a doctor���(10.52)

� �DN� DN�N� �x� �doctor�x� � N�x��

��VI�PARENT complement��a doctor will interview���(10.53)

� �D� �x� �doctor�x� �D�y� interview�x� y��
lift�
� �D� D�y� �x� �doctor�x� � interview�x� y��

��D0�PARENT none��a doctor will interview every patient���(10.54)

� 
y� �patient�y� � �x� �doctor�x� � interview�x � y���
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Conclusions to chapter 10

This chapter discussed three major issues: (i) it showed that a very restricted form
of tuple grammar, in which the cluster divisions are well-motivated, turns out to have
a very reasonable capacity for describing complex word order phenomena, including
those in languages that are often considered to have a totally free word order; (ii) this
method allows for very general statement of word order phenomena such as order
preservingness and head-right adjacency, which is especially useful in describing
almost-free word order phenomena and (iii) it proposed a very tentative method to
transform traditional structures in such a way that the main dependencies in relative
clause attachment are localized. The last item should not be considered as inherent to
FHG; in the Epilogue, the use of alternative methods to get this complete localization
are discussed.

Various ideas taken together have appeared at other authors; order preservingness
is a key notion in the sequence union based grammars of REAPE [Rea90]; the free form
of head grammar splitting up constituents into three parts also appears in [vN93]. I did
not find the intermediate characterization of head-right adjacency, which yields levels
between the ultimately free form and the stricter form originally proposed by Pollard,
in the literature.

In the spirit of the polynomial bound calculation done in section 5.2, something
can be said about the expected complexity of LMG grammars derived from sets of
FHG principles and parameters. Disregarding the tree inversion of section 10.4, there
are 3 clusters and 6 variables, resulting in a first estimate of O�n9�. However, two of
these variables generate a head that is always terminal, so if the implementation used
indeed recognizes these as a single symbol, then two indices are dependent, so the
space complexity would be O�n5� and the time complexity O�n7�. In the presence
of inverted dominance, this will increase to at least O�n10�. But of course these are
theoretical estimates, and a two-stage analysis based on a backbone CFG may cut
down the average case by a polynomial factor.

It has been glossed over in this chapter, which in its last section claims to achieve
‘complete localization’ in the form of a universally bounded dependency domain, that
there are still some phenomena for which no satisfactory solution has been proposed.
An important example is parasitic gapping. For another example frequently cited, of
the type “Sandyi� Felixj was hard for Kim to give �j to �i” mentioned in the previous
chapter, is a typical case that is treated in HG style frameworks at a semantic level:
it is said that there is no syntactic dependency between give and Felix, but rather that
hard to give to Sandy is an adjectival phrase.
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Epilogue
Parallel and hybrid developments

The central subject of this thesis can be summarized as the investigation of grammar
formalisms that slightly relax the principle of projectivity that is inherent to many
approaches in linguistics. The three parts of this book have in particular shed light
on one such family of formalisms, tuple grammars, contained in the generic family of
literal movement grammar, from several perspectives inspired by the observations A-J
made in the Prologue. The underlying motivations can be summarized as putting stress
on two major issues that are important in the design of concrete language engineering
systems: computational tractability and explanatory quality.

In the manner and order of presentation chosen, a number of connections, both
between the different perspectives and between the investigated approaches and other
frameworks in the literature, were not given attention. The figure on page 214 is a
summary of what has been treated where; the fields marked E have been left open until
now and will be discussed in this Epilogue.

To fill up the gaps in this landscape, I will first discuss briefly, in the sections E.1
and E.2, what this thesis might have looked like when it would have concentrated on
CATEGORIAL GRAMMAR (CG) or TREE ADJOINING GRAMMAR (TAG), instead of taking
the traditional context-free phrase structure as a point of departure. Both TAG and
CG are approaches that feature an emphasis on LEXICALIZATION that this thesis has
not devoted much attention to, but which, as I intend to show, has nonetheless been
implicitly present.

The final section E.3 is a general discussion summarizing the perspectives of
part II, part III and this Epilogue, then taking them together to draw a number of
conclusions about the design of language engineering systems and highlight issues
that need further investigation.
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E.1 Categorial grammar

CATEGORIAL GRAMMAR (CG) is the favourite framework for many logicians in at-
tempts to “find natural language syntax a home” in the domains of mathematical
logic. Classical CG, introduced by BAR-HILLEL and AJDUKIEWICZ [BH53] is strongly
equivalent to CFG; the well-known extension in the form of a calculus L by LAM-
BEK [Lam58] still generates the context-free languages, but has a form of structural
completeness that allows the calculus to classify partial constituents. This correlation
with CFG and the additional benefits of Lambek’s system make it interesting to in-
vestigate CG as an alternative basis for the developments investigated in this thesis.
Tuple-driven analysis in CG appears in the literature only in a very limited way (cf.
extraction and the W marker in [Mor94], p. 106ff). A less logically oriented, more
rule-based version of CG called COMBINATORY categorial grammar (CCG), mentioned
elsewhere in this thesis for its computational properties and connections to TAG and
HG, is beyond the scope of this Epilogue.

The discussion here is divided into the same three parts as the chapters of this
thesis.

Formalisms

A standard CATEGORIAL GRAMMAR (CG) consists of a number of BASIC TYPES, a
DISTINGUISHED TYPE s, which takes the function of a start symbol, and a LEXICON.
COMPLEX TYPES are formed inductively from the basic types: a basic type a is a
type; if x and y are types, then so are x�y and xn y. The lexicon now associates with
each element of a terminal alphabet T one or more types. From the types assigned to
terminal symbols, types are now assigned to strings of terminal symbols as follows:

1. If a terminal symbol a is associated in the lexicon with type x, then a : x,

2. If u : x and v : xn y, then uv : y,

3. If u : y�x and v : x, then uv : y (where u and v are terminal strings).

The grammar now derives a string w if w : s can be derived.

An example CG is displayed in figure E.1. It is straightforward to see that each
standard CG has a strongly equivalent CFG—since the lexicon is finite, only finitely
many types play a rôle, and a context-free grammar can be constructed that has these
types as its nonterminal symbols. The mechanism of type formation in fact closely
resembles the way the control types work in the FHG system in chapter 10. In this
formulation, CG is just a linguistically well-motivated way of organizing a context-
free grammar—in particular, CG has the same clean interface between syntax and
�-semantics as FHG where heads are functions and complements are arguments.

Since Bar-Hillels publication, CG has been extended with various rules allowing
types to derive new types in non-standard fashions, such as in the following lifting
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distinguished type is s

Frank : n
Julia : n
Fred : n

slept : nns

hates : �nns��n
admires : �nns��n

Frank : n
admires : �nns��n Julia : n

admires Julia : nns
Frank admires Julia : s

Figure E.1: Small categorial lexicon and a derivation

rule:

x�y � �znx���zn y�(10)

and following that, interest in CG has gradually diminished, until a while after LAMBEK

introduced the calculus L, that adds introduction rules for the slash operators, in
addition to Bar-Hillel’s two rules that only eliminate the slashes. In Lambek’s calculus,
all proposed extended rules can be derived.

Lambek’s system is as a standard CG, but for the grammar to recognize a string
w � a1 � � � an, a SEQUENT Γ � s must be proved in the calculus L in figure E.2, where
Γ � t1 � � � tn is a sequence of type such that type ti is associated with terminal ai.
Unlike classical CG, Lambek system is not strongly equivalent to CFG, because it
turns out that due to the introduction rules, Bar-Hillel and Lambek categorial grammars
with the same lexicon do not always generate the same string set. It was proved long
after Lambek’s 1958 paper in [Pen] that Lambek’s strongly more powerful calculus
nonetheless generates precisely the context-free languages.

axioms : x � x

Γ � x ∆1� y�∆2 � z
∆1�Γ� xny�∆2 � z

nL
x�Γ � y
Γ � xny

�R

Γ � x ∆1� y�∆2 � z
∆1� y�x�Γ�∆2 � z

nL
Γ� x � y
Γ � y�x

�R

Figure E.2: Lambek’s calculus L.
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Lambek derivations take some practice to read, because the sequent notation intro-
duces a notion of hypothetical reasoning—the following corresponds to the classical
CG derivation in figure E.1.

n � n
n � n s � s
n� nns � s nL

n� �nns��n� n � s
�L(11)

An introduction rule can now be used to derive a new type for a partial constituent
consisting of a subject and a transitive verb, that forms a sentence when combined
with an object to its right:

n� �nns��n� n � s
n� �nns��n � s�n

�R(12)

If the word and is now given the following lexical entries,

and : sn�s�s�
and : �nns�n��nns���nns��
and : �s�n�n��s�n���s�n��

(13)

the lambek calculus will recognize, apart from conjoined sentences and intransitive
verb phrases, the partial conjunction (14), which is missed by Bar-Hillel’s formulation,
using 3 applications of the Cut rule in (15) which can be added to the calculus without
increasing the set of derived sequents.

Frank admires and Fred hates Julia(14)

Γ � x ∆1� x�∆2 � y
∆1�Γ�∆2 � y

Cut(15)

This ability of dealing with non-constituent co-ordination is one of the more im-
portant features of Lambek grammar. Various approaches to phenomena such as
the Dutch crossed dependency structure have also been proposed, but often suffer
from overgeneration—many stronger systems turn out to describe only the regular
languages—and detailed linguistic analysis is either disregarded or leads to systems
that get either excessively complex and lose their elegant logical formulation [Moo88]
[Mor94] [BvN95]. One approach, that of multi-modal categorial grammar, has been
suggested to me to provide for analogues of the tuple paradigm. The relationship is not
straightforward, because multi-modal CG tend to identify scopes within a traditional
left-to-right tree analysis in which binding of some elements may be postponed, hence
achieving long-distance dependencies. But this is exactly what tuple grammars were
designed not to do. Nonetheless, an in-depth analysis of the relationship between
multimodal CG and REAPE’s WORD ORDER DOMAINS, whose connection to the tuple
grammars of this thesis suggests itself more clearly but is not entirely trivial, can be
found in [Ver96].
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axioms: � : x � � : x
structural rules: cut, contraction, permutation, weakening

Γ � � : x 
 : y� ∆ � ��
� : z

Γ� � : x
f
� y� ∆ � f��� �����

� L

Γ� � : x � ���� : y

Γ � x
g
� y

� R

where �� �� 
� � are tuples over terminal strings, f� g � F and g is defined by
g�
� � ��
�.

Figure E.3: Lambek-tuple calculus LT.

The close resemblance to the control types of an FHG (chapter 10) and the types
assigned to lexical entries in a categorial grammar makes it worthwhile to investigate
whether CG and the tuple paradigm can be combined in a systematic fashion. A simple
tuple-based operation appears in [Mor94], but is given in the form of an extra operator
in addition to n and � and needs explicit extra rules. The resulting systems, which
often introduce a wealth of such extra operators, lose the elegant compactness of the
original L calculus. One key to a solution is, as is already done in [Mor94], to abandon
the implicit rule of associative concatenation in the sequents of the calculus, and move
to a system of labelled deduction; but an essential further step is to let all operators
collapse into a single functional arrow operator annotated with a yield function that
operates on tuples of strings.

Let the class F be a set of yield functions, and let a set of basic types and a
distinguished type be given. Then complex types are either basic types or of the form

x
f
� y where f � F and x and y are types. Let the lexicon assign sets of tuples of

strings to a finite subset of the types, and let the rules of inference be as in the calculus
LT in figure E.3. A prudent choice for F may be the linear, nonerasing subset of the
FHG operators, resulting in a form of “free Lambek head grammar”. If F consists
only of the left and right concatenation operators over 1-tuples, and the lexicon assigns
types only to single terminal symbols, the resulting grammar system corresponds to
the Lambek calculus. If the concatenation operators are given the same labels as
in chapter 10, then as an advantage of the LT notation, the confusion1 about the
directionality of the categorial backward slash between different authors is eliminated:

the forward slash becomes
HC
��, and the backward slash

CH
��, and in both cases the

argument appears left of the arrow, the result to its right. The type expressions can be
declared right-associative by the well-known convention for writing down functional

1Some authors write ynx where I would write xny—that is, there are different opinions as to whether the
numerator should always be ‘above’ or always be ‘left’ of a slash denoting categorial division.
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type expressions (cf. chapter 10).

The following derivation step is the LT equivalent of (12), but in an analysis that
models the Dutch sentential order as in the FHG examples of chapter 10:

���Frank� �� : n� ���bewondert� �� : n
CH
�� n

CH
�� s�

���Julia� �� : n � �Frank Julia�bewondert� �� : s

���Frank� �� : n� ���bewondert� �� : n
CH
�� n

CH
�� s

� �Frank�bewondert� �� : n
CWL
�� s

� R(16)

The LT grammar system can be used to give a model of non-projective surface order
phenomena in the spirit of the solutions proposed in this thesis, with the additional
benefit of an account of non-constituent co-ordination. Of course, connectives like
and still need to be explicitly assigned polymorphic types, since they cannot be derived
within the calculus [Moo88]. This is more difficult in a tuple-based system as finding
the entries for multi-cluster constituents may not be straightforward.

I did not find the time to investigate the details of a system that allows f and g in the
LT rules to be arbitrary relations rather than functions, which would lead to systems
weakly equivalent to brands of LMG that are closed under intersection.

Computational tractability

While Lambek grammars weakly generate the context-free languages, a transformation
of a Lambek grammar to a CFG results in exponential blow-up. The complexity
of universal recognition, based directly on the L calculus is unknown—up to now,
nondeterministic polynomial algorithms are the best known.

These results will carry over straightforwardly to the LT system, with the exception
perhaps of the weak equivalence proof between sensibly chosen classes of tuple gram-
mars and the corresponding classes of LT systems. Problematic may also be the fact
that in the current formulation, the lexicon can assign the empty string to types—but
this is easily revised.

An important practical problem of Lambek CG is spurious ambiguity: while
ordinary CG assigns only single tree structures to a sentence, Lambek grammars
derive each possible binary branching analysis. These must ideally be contracted to a
single analysis, but this is not a simple task. While this is a valid objection from the
perspective of an adherent of CFG, it should be noted that an FHG analysis of Latin as
proposed in chapter 10 suffers from the same problem: the surface order in Latin is so
free that a sentence with a fairly straightforward word order will get various analyses,
from which preferably only the simplest, non-wrapping analysis should be extracted.
There is one notable difference between these two types of spurious ambiguity—in
the FHG case, the different equivalent derivations will differ only on the RULE feature
but are identical otherwise, and can hence be merged easily.

The move from a standard tuple-based framework such as FHG to the LT system
will need to accept degradation of computational tractability properties and spuri-
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ous ambiguity in exchange for the ability to describe and study non-constituent co-
ordination in combination with the tuple-driven descriptive methods of chapters 9 and
10.

It should finally be noted that unlimited polymorphic types for a word like and
further deteriorate the computational properties—but as before, there is no essential
difference between L en LT here.

Principles

There is a large resemblance to the way FHG in the previous chapter abstracted over
the application of concrete LMG productions, and the way a categorial grammar shifts
all information to the lexicon while retaining only a small number of explicit rules.
The LT system takes this shift a bit further, by abstracting away over the difference
between the operators, moving those to the lexicon too. Principled approaches to non-
constituent co-ordination have been investigated elaborately in the context of Lambek
grammars. The use of LMG sharing for modelling co-ordination phenomena becomes
redundant as soon as categorial type lifting is used. It is to be expected that the rôle
of sharing is thus reduced considerably. I have not been able to find out whether
the remaining phenomena that are beyond the reach of linear MCFG, such as Old
Georgian suffix stacking and Chinese number names (cf. chapter 8) can be dealt with
in a Lambek tuple grammar without use of terminal sharing or reduplication.

Conclusion

Large parts of the work done in this thesis could have been laid out in a categorial
setting, and this is likely to lead to interesting benefits. However, it is unlikely that
I would have found an analogue for part II on computational complexity and the
possibility to add lexical sharing ‘for free’: categorial grammar is designed to perform
well as a logical system and is thus fairly automatically too heavy to be used in practice
in its pure form: it is probably NP-complete. Furthermore, the low cost of the sharing
construction is considerably less interesting for a grammar system like Lambek’s that
is not known to, and likely not to, be processable in polynomial time, and which has
mechanisms that reduce the need for sharing.
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E.2 Tree adjoining and head grammar

TREE ADJOINING GRAMMAR (TAG) is a formalism that manipulates surface trees
through the operations of substitution and adjunction. It has already been mentioned
briefly at various places in this thesis, and is weakly equivalent to MHG. A progression
similar to that from CFG to linear MCFG has been made for TAG—the result is the
MULTI-COMPONENT MC-TAG formalism, which is weakly equivalent to linear MCFG.
Slight extensions of the standard form of TAG are popular in fields of research similar
to that reported on in this thesis.

I will now give a brief definition of TAG, and show some parallels between what
was done in sections 8.2 and 10.4 and the approach TAG take in describing Dutch
crossed dependencies and localizing relative clauses. This is a good point of departure
for an investigation of what the results in this thesis, for as much as they have not
already been obtained in the literature, would look like in a TAG context. Finally, I
propose ways of embedding tuple-based surface generation and lexical sharing into
a TAG framework, using the parallel between TAG and MHG that is often used to
construct simple recognition procedures for TAG.

DeÆnition and examples

In a context-free grammar, surface structure and derivational and deep structure are
taken to be identical. This is known to raise various problems (see chapter 1), which
were solved in this thesis by dividing the yield of constituents into tuples; tree adjoining
grammars solve these problems by assigning to a sentence two structures: a derivation
tree and a derived tree. According to the definitions in section 1.3, the derivation tree
is a dependency structure and the derived tree a traditional surface structure.2

E-1 deÆnitions. A TREE ADJOINING GRAMMAR (TAG) is a tuple �N� T� S�EI�EA�
where N, T and S are as for context-free grammars, and


 An INITIAL TREE is a tree whose root node is labelled with the start symbol S
and whose leaves are labelled with terminal strings only.


 An AUXILIARY TREE is a tree with a root node labelled with a nonterminal symbol
A, one leaf, the FOOT NODE, also labelled A and all other leaves labelled with a
terminal string.


 E � EI � EA is a set of ELEMENTARY TREES, divided into a set of initial trees EI

and a set of auxiliary trees EA.

A TAG derives tree structures, by the following operation of ADJUNCTION. Let t be an
initial or auxiliary tree, with an internal node labelled A, and let s be an auxiliary tree

2To keep this discussion brief, I have omitted in definition E-1 the substitution operation and OA/NA
constraints that are usually added in concrete TAG examples.
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whose root is A:

t �

S

u1 A u2

w

s �

A

v1 A v2

(17)

then the result of adjoining s into t at the A node is

s �d t �

S

u1 A u2

v1 A v2

w

(18)

where d is the address of the node labelled A in t.

Now, inductively, a DERIVED INITIAL TREE is an initial tree that is either elementary
or obtained by adjoining a derived auxiliary tree into a derived initial tree; and a
DERIVED AUXILIARY TREE is either elementary or obtained by adjoining a derived
auxiliary tree into another derived auxiliary tree.

A TAG now derives a sentence w if there is a derived initial tree whose yield is
w. This tree is called the DERIVED TREE FOR w. The term constructing this tree from
elementary trees using the adjunction operator� is called the DERIVATION TREE for w.

E-2 example: English complementation. Adjunction is typically used in a TAG
to describe adverbial and adjectival modification, but also for verbal complementation.
In a simple TAG without verbal complementation, the initial tree into which trees are
adjoined is always the matrix clause. The following are examples of elementary trees
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in a simple TAG.3

coffeeJulia drank

N0 VI

N0VT

V0
i :1

yesterday

VI

Adj0VI

a :1

black

N0

A0 N0

a :2
d :1

d :2

(19)

The sentence Julia drank black coffee yesterday is now derived as �i1 �d2 a2��d1 a1.

The complementation verb think is now entered in the TAG not in an initial tree,
but through adjunction.

Frank thinks

N0 VI

V0VS

V0
a :3

(20)

The sentence Frank thinks Julia drank coffee is now derived by the adjunction i1 �d0

a3. Note that the matrix verb frame Frank thinks � � � is, in the derivation tree,
daughter rather than parent. This has some analogy to the inverted dominance relations
suggested in section 10.4, and a similar mechanism is used in TAG to completely
localize the dependencies involved in relative clause attachment.

E-3 example: crossed dependencies. The very same mechanism makes that
TAGs easily generate Dutch crossed dependencies. However, the following example
set of elementary trees for Dutch reveals a problem that was implicitly present in
the English example: the initial tree corresponds to the inner verb clause, but the
root of this initial tree nonetheless represents the root of the derived sentence. This
corresponds to the “weird” case in the strong generative capacity investigation for
MHG in section 8.2 in which the lowest node of the derivation contains material from

3In practice, one adds the notion of substitution and replaces the concrete subject and objects under the
N0 in the initial trees with the substitution marker �.
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the top level of the sentence.

koffieJulia drinken

N0 VI

N0 VT

V0

i :1 a :1

d :2 Frank

zag

N0 VI

V0

VR

V0

dat

C

C0

VT

3

OA

3

VR

V0V0NA

NA

NA

i i

j

j
(21)

If the Dutch set is to be extended with declarative and interrogative sentences, there
must be additional initial trees for Julia koffie drinken to yield each of these situations.
But in parallel with this, the auxiliary tree must also come in various versions to get
initial and second position of the finite verb.

*

The latter example highlights a more general problem in TAG. The elementary trees
are, on the one hand, supposed to model minimal linguistic structures, for example, a
verb with its complement nodes. In this way, all the nodes that are in a dependency
relation stem from one lexical item,a lexical item being an elementary tree. But as more
complex phenomena are treated, such as relative clause attachment and Dutch crossed
dependencies, the elementary trees become complex structures. It is common practice
in practical TAG grammars to have large macro schemes that generate elementary
trees. These schemes quickly become so intricate that they become part of the grammar
system. It is unclear to me whether this is a desirable feature, and the Dutch example
seems to highlight this particularly well.

Tags and tuples

It seems reasonable to assume that, even though the mechanisms employed to obtain
localization of relative clause attachment and crossed dependencies in TAG are essen-
tially the same, the analysis is acceptable in the first case, but becomes a burden in the
second. It seems, at least, evident that the tuple-based method of generating crossed
dependencies is less involved—and it has the benefit that word order generalizations
can be stated easily in terms of order preservingness and head-right adjacency, cf.
chapter 10. On the other hand, the tuple-based (9.4) and tree-inversion (10.4) methods
of topicalization and wh-extraction are more involved and no more defendable than
the TAG analysis. Therefore it interesting to investigate to what extent both methods
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can be combined. This would yield a system that generates word order in verb phrases
through tuples, and has an elegant way of turning around the dominance relation in
the derived tree while maintaining derived trees in the traditional shape, replacing the
tree inversion paradigm proposed in section 10.4.

In a traditional TAG, the elementary and derived trees correspond to context-free
derivation trees. It is easy to make the step to TAGs over LMG or FHG derivation
trees. It seems to follow straightforwardly from the way TAGs can be translated to
head grammars, that such grammars have tractable recognition, as is illustrated in the
following sketches.

E-4 sketch: TAG recognition and MHG [WVSJ86]. This is a simplified sketch
of the procedure outlined by Weir, Vijay-Shanker and Joshi. Assume that the elemen-
tary trees in the TAG have binary branching and no adjunction constraints (NA, OA).
The structure of the elementary trees of a TAG can be described straightforwardly us-
ing MHG productions. There is a nonterminal Xd for each node d of each elementary
tree t. For each internal node d with daughters d1 and d2, there is a production

Xd � head-complement�Xd1 �Xd2�

if the tree t is initial or t is auxiliary and the foot node of t is in the subtree rooted by
d1; or

Xd � complement-head�Xd1 �Xd2�

when the foot node of t is in the subtree rooted by d2. With these productions, the
nonterminals Xd for root nodes d derive the yield of the initial and auxiliary trees, split
up, in the auxiliary case, at the point of the foot node.

Now, to model adjunction, for each internal node d labelled with a nonterminal A
and each auxiliary tree with root r also labelled A, there is an additional production

Xd � head-wrap�Xd�Xr�

which has the effect of wrapping the yield of the auxiliary tree around that of the
subtree under d.

The start symbol of the MHG is rewritten to the root nodes of all the initial trees.
Now the MHG recognizes the same strings as the original TAG.

*

This idea of considering a TAG as a phrase structure grammar that derives strings with
“holes” in them, i.e., head grammars, can be extended to adjoining systems over tuple
derivations. In this case however, these “holes” are best represented directly, rather
than implicitly as the split points in an MHG.

E-5 sketch: HG-TAG. Let a set of initial and auxiliary trees be given, whose nodes
are consistently annotated with MHG productions. From these trees, an iLMG is
derived which encodes each node in each elementary tree as a predicate over 8 indices:

Xd�l1� r1� l2� r2� i1� j1� i2� j2�
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representing the yield of a normal MHG predicate split up into a left component
al1 � � � ar1 and a right component al2 � � � ar2 with two holes, stretching over ai1 � � � aj1
and ai2 � � � aj2 . These holes can both be in either component, and correspond to the two
components of the foot node. It is now straightforward to write down the productions
that make up the elementary trees and the productions that define adjunction.

*

It appears that this can be extended without many problems to linear MCFG, and
possibly also to arbitrary simple LMG trees, which would lead to an extension of
TAG that describes precisely the polynomial-time recognizable languages like simple
LMG. It is also interesting to investigate whether an MC-TAG over 1-S-LMG trees,
i.e. context-free trees with sharing, will generate PTIME.

Another extension of TAG, called D-tree grammar,has been proposed in [WVSR95]
which provides a solution for the fact that adjunction is used in TAG both for modifi-
cation and verbal complementation, and this yields derivation structures that capture
almost, but not completely the right dependency structures. It is expected that it will
be possible to carry out constructions similar to the ones proposed here for DTG.
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E.3 Concluding discussion

The TUPLE GRAMMARS of chapter 3 form the basis for the bulk of the work done in
parts II and III. The essential qualities of the LMG formalism, which extends the
previously known formalisms LCFRS and PMCFG, are (i) a notation which makes
them a more accessible tool for concrete use in writing simple grammars or in building
substantial grammatical frameworks, and (ii) the ability to model sharing of substrings
of the input between different parts of a derivation in a restricted version that describes
precisely the languages recognizable in polynomial time.

Precisely this ability to describe sharing is also a problem of simple LMG. At
a formal level, it is a problem because generic Turing machine implementations of
recognizers have an essentially worse time complexity than equivalents for non-sharing
formalisms such as PMCFG (chapters 4 and 5). In more practical approaches, based
on real-world, random access models of computation, this problem does not occur,
but here the sharing is a source of possibly undesired parallelism in phases of post-
structural analysis that assignfinite attributes to LMG derivations. A related problem is
that Nederhof/Sarbo’s algorithm for calculatingfinite attributes runs into a problematic
case with some sharing LMGs. An additional problem is that sharing complicates the
application of LMG to input in the form of a lattice or finite automaton as is often done
in speech analysis; this problem is analogous to the possible misinterpretations made by
a sharing analysis of co-ordination: sentences like � � � dat Anne Frank binnenkwam en
groette (that Anne Frank came in and [Anne] said hello to [Frank]) are found correct.
In the lattice equivalent, different choices for unclearly pronounced morphemes may
be selected where shared material is used in different parts of the same derivation.

Altogether, sharing is a property of LMG that is to be used, if at all, with extreme
caution. From weak-generative and computational points of view however, is has also
been shown that simple LMG clearly has its merits (chapters 8 and 5).

*

EXTRAPOSITION GRAMMAR was introduced as a candidate for providing solutions for
the surface order phenomena under investigation, and in chapter 6, some gaps in the
available knowledge on XG were filled in that showed that unless some modifications
were made, XG was intractable. Let me summarize briefly why the thread on XG
abruptly ends here while the tuple grammars proceed to play a major rôle in part III.

At the level of attribute evaluation, there is a problem with XG—the tractable meth-
ods of analysis based on loose XG proposed in chapter 6 yield tree structures in which
the trace-filler connections are not explicitly connected. It is, at this point, unclear
to me if and how these connections could be re-established in a forest representation.
It seems clear to me that, to be interesting at all, an annotated XG would have to be
allowed to make use of affix constraints between trace and filler positions. The current
knowledge on dealing with annotation of ambiguous tree representations is still highly
limited—it is hard to imagine what new problems will be introduced if one should
attempt to define attribute phases over ambiguous graph representations that are to
be the output of a generic XG parser. This encourages an optimistic interpretation
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of ‘tractable syntax’ as formalisms that achieve a bounded dependency domain and
produce tree-shaped structures.

Both XG and the proposed modified versions also seem to lend themselves less well
for a principled, explanatory approach to the desired classification of ‘mild projectivity’
and XG did not return as a major topic in part III. Of course this is not meant to say
that a study in the spirit of chapters 9 (GB) and 10 (FHG) should a priori be excluded
as not promising. STABLER [Sta87] has looked at XG and GB principles and let these
influence the design of extensions to XG that seem to be aimed mainly at application in
simple DCG based grammar systems than at being a basis for explanatory approaches
to word order.

Nonetheless, loosely interpreted XG was used in section 8.2 to argue that scram-
bling in German can be processed in polynomial time. It is an entertaining observation
that I have not found an equivalent simple LMG description.

*

PART II (chapters 6–7) already put itself in a larger context, when briefly discussing
approaches in the literature that are in collision with the claims and results I presented.
These discrepancies are concentrated around the familiar debate whether, on the one
hand, tractability claims such as the ones made in this thesis are convincing, and on the
other hand, whether evidence for the intractability presented in various other literature
is conclusive.

A representative series of arguments for the intractability of natural language can
be found in works by RISTAD, BARTON and BERWICK [BBR87] [Ris90]. The general,
justified, worry of these arguments is that as soon as formally minded, ‘platonic’,
grammar systems are studied as a tool for concrete description, performance param-
eters deemed unimportant in the optimistic formal literature become a bottle-neck.
Most of the case studies in [BBR87] and [Ris90] however suffer, as said before,
themselves from ‘formal optimism’: they do not investigate the size of the input and
various grammar measures independently. Many references to intractability of natural
languages proceed along these lines: (i) a doubt or series of doubts is expressed, which
is insufficiently formalized; (ii) a series of formal results is presented to substantiate
the doubt, but what is proved is not conscientiously brought in connection with the
doubts.

Strictly speaking therefore, the conclusions drawn can often at best be read sep-
arately as unsubstantiated claims, and the formal results as mathematics lacking a
motivating context. In the case of simple LMG recognition, we even have proofs of
both tractability and intractability living happily together (section 5.3).

Another delicate matter, but one less important vis-a-vis the tractability claims
in this thesis, is whether it is justified to draw conclusions about natural language
in general from a study of certain grammar formalisms. In his PhD thesis [Ris90],
Ristad puts stress on the importance of a so-called direct complexity analysis, which
takes indisputable knowledge about language as a basis for an (in)tractability proof,
and does not rely on a particular language model. However, as an instance of such
an analysis, Ristad (page 42) proposes to take a phenomenon (agreement and lexical
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ambiguity); to show that independent of whether one attempts to describe it using a
unification based formalism or a transformational theory, this leads to an intractable
task; and to conclude that hence the task in general is intractable. So a direct analysis is
one that does not depend on one syntactic theory but on two theories. Evidently, if the
complexity of a phenomenon is to be investigated, independently of the grammatical
framework, this type of analysis is also to be avoided. In particular, Ristad seems to
have to rewrite his chapter 3 after reading chapters 9 and 10 of this thesis—in fact
the chapter needs to be rewritten every time a new approach is sketched that seems to
tackle the problem he studies.

The following arguments in the literature do not suffer from the problems men-
tioned above.

1. From a perspective of weak generative capacity and fixed recognition, adding
finite attributes to a grammar system equivalent to or strictly stronger than CFG
is free, because the attributes can be encoded into the set of nonterminal symbols.
It is well known that in the worst case, the resulting expanded grammar whose
nonterminals form an attribute space has at least exponentially more rules than
the original grammar, taking the grammar beyond the reach of any real-world
computer system. Direct processing has been proved in general not to be
able to improve on this situation: recognition of finitely annotated context-free
grammars is EXP-POLY time hard in the size of the grammar. Moreover, there
are convincing arguments that the attribute spaces that are typically used in
natural language grammars often trigger this worst case ([BBR87] appendix B).

2. Binding phenomena or anaphora ([Ris90] chapter 4) are problematic, and have
in this thesis simply been put away as ‘post-syntactic’. This is in line with the
idea of dividing language analysis in a series of dedicated small steps.

3. The one truly direct complexity analysis in Ristad’s thesis is in chapter 2,
structure of phonological knowledge. If I put anaphora away as post-syntactic,
phonological and morphological analysis has been put aside as pre-syntactic,
which I find a more worrying lack on my side, because it considerably weak-
ens the desired conclusion of tractability of the syntactical analysis of written
language.

A number of aspects that make up arguments for intractability of complex
morphology that do refer to known grammatical theories, such as reduplication
in [BBR87] chapter 5, are treated by the formalisms in this thesis (and in fact
already by parallel MCFG).

Many systems used for concrete grammar writing today however are based on theoreti-
cally intractable frameworks, with varying degrees of success. Many such systems are
indeed slow and cover only very limited fields or fragments of language, but many also
show good benchmarks on representative concrete examples. In the case of Nederhof
and Sarbo’s algorithm, discussed in chapter 7, it can be concisely assessed based on
representative example grammars, how much benefit multi-stage analysis can give.
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The examples seem to indicate that while the overall time and space complexity of
such multi-stage approaches remains of the same order, the time and space benefits
grow at the same rate as the complexity function of the algorithm. So such approaches
are not mere engineering optimizations but deserve to be used as concrete data in the
discussion on tractability of natural language processing.

A pressing question is whether it is not the case that whatever is added to the
growing amount of lexical information in natural language systems, this information
can always be divided into sets of attributes or feature paths that do not interact. An
example is subcategorization and finite selectional-semantic properties versus mor-
phology. If this is the case, such groups can be processed in successive stages of
attribute evaluation, rather than simultaneously. If such chunks of information are
found to have a concrete bound, predictions can be made about the concrete feasibility
of natural language tasks, since the exponential size parameters will then have been
fixed. This line of reasoning is feasible only under a strict regime of finite attributes,
and is many times more complicated in a realm of generic feature structures and
unification—this has been an important motivation for my decision to put stress on
finite attribute analysis.

*

CHAPTER 8 on generative capacity is a bridge between the mathematically oriented
parts I and II, and part III and this Epilogue which have a very broad perspective.
The construction in section 8.2 done for MHG is reflected twice later, in the tree
inversion paradigm proposed in section 10.4, and in E.2, where it is mentioned that in
TAG, relative clauses are also described by virtue of the fact that in TAG’s derivation
structures, the verbal clause subsumption relation is reversed. The construction in 8.2
can be read as proving that in TAG, like in MHG, this reversal is a consequence of the
desire to localize relative clauses. In combination with a description of languages like
Dutch and German that have verb second, this implies that lexical frames for infinitive
verbs must necessarily be multiplied out over a rather large set of combinations of
finite verb positions and topicalization types. In E.2, it is proposed that it is therefore
a worthwhile idea to hybridize TAG and HG.

*

This idea of hybridization is present throughout this thesis, and is a result of my attempt
to achieve a broad coverage while keeping the terminology, meta-theoretical notions,
and notation consistent. This has resulted in a book that consists for large parts of the
presentation of known formalisms and results, but adds small new results at various
places, and, in particular, is at the end able to draw parallels that were difficult to make
had all material presented here not been put together under a single cover.

The proposal of hybrid systems in the previous two sections, dealing with CG
and TAG, is similar to the conclusions drawn in chapters 7 and 10: after careful
assessment of each formalism for its particular qualities, and the possible interfaces
between different worlds, a good approach may be to take a component from each of a
small number of systems, and build something that applies each of these components
for what it is good at—so as to obtain a system that is good at everything. A general
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example is the capability of many paradigms to describe crossed dependencies in
Dutch: in TAG for example, showing this capacity in the literature is done as a formal
exercise, but in practical systems, the exercise no longer satisfies ‘grammar quality’
standards, as the way the minimal trees and the operation of adjunction are used is
nonstandard. Nonetheless, TAG provide a well-motivated model for adjunction and
localization of relative clause attachment. A similar story holds for the capacity of
a Lambek-style calculus to deal with non-constituent co-ordination, and again the
same goes for the stages of context-free prediction and true LMG parsing, and to
various levels of specification of finite morphological attributes or semantic domain
information.

This is in line with the original objective of the project in which I carried out the
research for this thesis: to investigate various approaches to trans-context-sensitivity
and aim at forms of “cross-fertilization”. A possible point of objection is that the rôle
reserved for methods from a Computer Science or Software Engineering background
is at best present implicitly—however, it is, as such, present very strongly, because
the software engineering tools I looked at in the first years of my research led strongly
to the desire for a syntactic formalism that eliminated completely those ambiguities
that are introduced by methods used to describe phenomena of surface discontinuity
in analyses based on a context-free grammar.

*

A FURTHER EXAMPLE OF HYBRIDIZATION is the design of a complete system based
on FHG. It seems clear that the FHG paradigm as set out in chapter 10 is very
well suited to tackle the basic word order of languages like Latin and Dutch on a
principled, explanatory basis. However, for the description of the remaining long-
distance dependencies, and for co-ordination, various options are open. It has been
shown now that FHG can be successfully merged with techniques borrowed from TAG
and Lambek categorial grammar. One might equally well prefer to use additional
surface clusters, i.e., larger tuples, as proposed in chapter 9 on GB theory. When
efficiency of processing is at stake, the Lambek versions are an unlikely candidate. It
should also be noted that while a surface cluster with a finite SLASH feature, as proposed
in the GB chapter, may lead to a loss of efficiency, since this feature information needs
to be maintained in a forest representation, and this is a computationally expensive
doubling of the size of the feature space (see chapter 7). While the tree-inversion
paradigm proposed in section 10.4 is not worked out in enough detail here to predict
whether and how a practical or descriptive framework may use it precisely, the way
TAG generate relative clauses is ready-to-use, and a practical prototype system that
recognizes the suggested HG-TAG formalism from E.2 can be constructed quickly,
without many problems.

*

THE TREE INVERSION PARADIGM may not be worked out in enough detail here, it does
seem to have one consequence on a slightly smaller scale, that cannot be reproduced
with the tree adjoining solution. When relative clauses and other long-distance de-
pendencies are not taken into consideration, ENGLISH can be described accurately in a
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formalism consisting of a bilinear context-free backbone with a finite feature space—
think of GPSG [GKPS85]. If the tree inversion paradigm is added to such a grammar,
it will be able to describe a variety of long-distance dependencies, and the underlying
non-inverting grammar can, in contrast to the case of FHG where the result is a gram-
mar over 4-tuples, be shown to be again context-free (this is due to the bilinearity).
This leads to respectable evidence for the claim that the core syntax of English (as
opposed to Dutch, German and Latin) is strongly context-free.

*

Underlying derivational and representational formalisms, their computational tractabil-
ity, and the possibility to give accurate, explanatorily satisfactory grammatical descrip-
tions using the formalisms, are the three major ingredients of a EXECUTABLE DESCRIP-
TIVE LANGUAGE SYSTEM. By investigating various options for each of these topics I
hope to have opened new channels for the design of natural language systems that, fol-
lowing immediately from their theoretical underpinnings, have sufficient explanatory
capacities and are computationally tractable.
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Samenvatting in het Nederlands
Oppervlakte zonder Structuur

Woordvolgorde en computationele uitvoerbaarheid in natuurlijke- taalanalyse

Dit boek is het resultaat van een promotieonderzoek binnen het NWO-project incre-
mentele ontledergeneratie en context-afhankelijke disambiguatie, dat de doelstelling
heeft een brug te bouwen tussen kennis over en technieken voor de beschrijving
van talen in Software Engineering en Linguistiek. In beide gebieden hebben talen
zogenaamde niet-contextvrije elementen, maar de manieren om deze elementen te be-
naderen zijn in de Informatica en de Linguistiek nogal verschillend. De Linguistiek
zou kunnen profiteren van kennis in de informatica over snelle prototypering, het in-
crementeel parseren: ontleden terwijl de ontwerper nog aan de grammatica werkt.
De Informatica zou kunnen profiteren van de kennis van linguisten over het werken
met ambiguı̈teit. Ambiguı̈teit is een fenomeen dat in de Informatica vaak op ad-
hoc manieren wordt geëlimineerd om snelle verwerking te garanderen, terwijl deze
eliminatiemethoden de onderhoudbaarheid van grammatica’s in de informatica noe-
menswaardig aantasten.

Hier wordt het deel van dit project beschreven dat kijkt naar toepassingen op
linguistisch gebied. Terwijl het andere deel [Vis97], dat is uitgevoerd door EELCO

VISSER, juist een in de linguistiek veel voorkomende techniek bestudeerde, namelijk
die van het ontleden aan de hand van een contextvrije grammatica, gevolgd door een
fase van disambiguatie, is in het hier beschreven deel een bijna omgekeerde beweging
te zien. Door, in plaats van gebruikelijke contextvrije grammatica’s, aan de basis veel
sterkere formalismen te gebruiken, wordt de moeilijkheidsgraad van fases die volgen
op de structurele analyse (het primaire ontleden van de zin) wezenlijk vereenvoudigd.

Een CONTEXTVRIJE GRAMMATICA (CFG) is een systeem van herschrijfregels die
aangeven hoe uit een serie kleine zinsdelen een groter zinsdeel kan worden opgebouwd,
en wel door de kleinere zinsdelen letterlijk achter elkaar te zetten. Zo’n ononderbroken
deel van een zin dat een logische groep woorden vormt wordt in de linguistiek een
CONSTITUENT genoemd. Een voorbeeld van een CFG is (22) op de volgende pagina.
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S � NP VP
VP � VT NP
VP � VI

NP � Frank
NP � Julia
VT � kuste
VI � sliep

(22)

De eerste regel van deze grammatica zegt dat een S (sentence, zin) verkregen wordt
door een NP (noun phrase of zelfstandig-naamwoordsgroep) en een VP (verb phrase,
gezegde) achter elkaar te zetten. De tweede regel legt uit dat zo’n VP weer te verkrijgen
is door achter elkaar te zetten een VT (transitief werkwoord) en een NP. De derde regel
zegt dat een VP ook uit een enkel intransitief werkwoord kan bestaan. De laatste vier
regels zijn het lexicon van de grammatica. Deze eenvoudige grammatica beschrijft
slechts vier zinnen: Frank sliep, Julia sliep, Frank kuste Julia en Julia kuste Frank.

Contextvrije grammatica’s kunnen alleen zinsdelen kunnen opbouwen door klei-
nere zinsdelen naast elkaar te zetten. Daarom is het gebruik van CFG in de basis
van grote linguistische systemen afhankelijk van de aanname dat elementen in een
zin die op de één of andere manier ‘gerelateerd’ zijn (een linguist noemt die dan
afhankelijk), in de volledige zin ook direct naast elkaar staan. Dit heet ook wel
een CONSTITUENT-GEBASEERDE ANALYSE of de eigenschap van PROJECTIVITEIT. Er
is een aantal empirische voorbeelden dat de projectiviteit van taal in het algemeen
onwaarschijnlijk maakt—één van de meest belangrijke daarvan is het fenomeen van
gekruiste afhankelijkheden in het Nederlands. Het volgende plaatje (23) is daarvan een
voorbeeld. De dikke lijnen geven aan welke woorden ‘gerelateerd’ zijn zoals boven
bedoeld.

...dat Frank Julia koffie zag drinken(23)

Deze zin is niet projectief, omdat de werkwoordsgroep koffie drinken niet ononderbro-
ken terug te vinden is in de hele zin: het woord zag staat tussen koffie en drinken.

*

In de literatuur zijn talloze methoden te vinden om zulke niet-projectiviteit te beschrij-
ven; het meest gebruikelijk is aan te nemen dat elementen die aanvankelijk naast elkaar
stonden zijn verhuisd naar de plek waar ze werkelijk in de zin voorkomen. De LITERAL

MOVEMENT GRAMMARS (LMG) die als een rode draad door dit proefschrift lopen,
generaliseren een klasse van grammaticale formalismen die op vergelijkbare manieren
niet-projectiviteit beschrijven, zij het alle juist zonder aan dit idee van verhuizing te
appelleren. Het is misschien merkwaardig dat het woord movement juist in de naam
van zo’n formalisme voorkomt—dit heeft te maken met de observatie, die aan LMG
ten grondslag ligt, dat het voldoende is om niet hele linguistische structuren, maar
slechts ‘letterlijke’ rijtjes woorden te verhuizen.
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Het idee achter LMG is eenvoudig, en ligt dichtbij de manier waarop in logische
programmeertalen zoals Prolog tegen contextvrije grammatica’s aangekeken wordt.
De Prolog-vertaling van de contextvrije grammatica (22) is (24); in LMG-notatie
wordt dit (25).

s(Z) :- np(X), vp(Y), append(X, Y, Z).
vp(Z) :- vt(X), np(Y), append(X, Y, Z).
vp(Z) :- vi(Z).
np([frank]).
np([julia]).
vt([kuste]).
vi([sliep]).

(24)

S�xy� :- NP�x��VP�y��
VP�xy� :- VT�x��NP�y��
VP�x� :- VI�x��

NP�Frank��
NP�Julia��
VT�kuste��
VI�sliep��

(25)

Een eenvoudige progressie op deze notatie maakt het mogelijk dat een type constituent
zoals S of VP niet uit één, maar uit meerdere rijtjes van woorden bestaat, die dan op
verschillende plaatsen in de zin terechtkomen. De grammatica achter (26) is contextvrij
en beschrijft de ‘taal’ die bestaat uit rijtjes van n keer de letter a, gevolgd door weer
precies n keer de letter b, voor ieder willekeurig geheel getal n. De grammatica in
(27), die erg lijkt op de vorige, beschrijft rijtjes waar nog n keer de letter c achteraan is
geplakt. Van deze taal is bekend dat hij niet beschreven kan worden door contextvrije
grammatica’s. (Het symbool � staat voor een leeg rijtje).

A�axb� :- A�x��
A����

(26)

A�axb�cy� :- A�x� y��
A��� ���

(27)

Op vergelijkbare wijze beschrijft de grammatica achter (28) een fragmentje van het
Nederlands waar zin (23) inzit. De grammatica doet dat door een werkwoordsgroep
(VP) te laten bestaan uit niet één serie woorden, maar twee groepen, waarvan de
eerste bestaat uit een reeks zelfstandig-naamwoordgroepen en de tweede alleen uit
werkwoorden.
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S�� � �dat nmv� :- NP�n�� VP�m� v��
VP�nm� vw� :- VR�v�� NP�n�� VP�m�w��
VP�n� v� :- VT�v�� NP�n��

NP�Frank��
NP�Julia��
NP�koffie��

VR�zag��
VT�drinken��

(28)

De vier LMG-grammatica’s die ik nu heb laten zien zijn equivalent met uit de literatuur
bekende grammaticaformalismen, namelijk MULTIPLE CONTEXT-FREE GRAMMARS, ook
wel LINEAR CONTEXT-FREE REWRITING SYSTEMS genoemd. De toegevoegde waarde
van LMG blijkt te liggen in de beter leesbare notatie, waardoor deze grammaticale
formalismen geschikter zijn om niet alleen in theoretische zin over taal te praten, maar
ook daadwerkelijk concrete grammatica’s in te schrijven. Bovendien is de volgende
observatie cruciaal: een grammaticaregel van de vorm

A�x� :- B�x��C�x��(29)

moet worden geı̈nterpreteerd als: een rijtje woorden x is een A precies dan wanneer x
zowel een B als een C is. Dit wordt DOORSNIJDING of INTERSECTIE van talen genoemd,
en deze eigenschap hebben de traditionele formalismen uit de literatuur niet.
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Globaal overzicht van het proefschrift

De Proloog komt grotendeels overeen met deze samenvatting, maar bevat daarnaast
een overzicht van wanneer welke delen van dit proefschrift zijn ontstaan en welke
mensen daar essentieel aan hebben bijgedragen. De proloog formuleert en passant
een lijst van 9 points of departure die een groot deel van de motivatie leveren voor de
studies die in dit boek worden uitgevoerd. Hoofdstuk 1 is een gedetailleerde inleiding
in begrippen als contextvrije grammatica’s en projectiviteit. De rest van het boek is
opgesplitst in drie delen, die hieronder bondig worden samengevat.

I. Formele structuur

Deel één kijkt op een zeer mathematische, formele manier naar een tweetal groepen van
formalismen dat fenomenen van niet-projectiviteit aanpakt, namelijk EXTRAPOSITION

GRAMMAR (XG) en TUPLE GRAMMARS, waaronder het eerder beschreven LMG valt.
Hierbij ligt de nadruk op het classificeren van deze merendeels al eerder bestudeerde
formalismen en hun eigenschappen in een goed lopend verhaal. Bijzonder in dit deel
is dat er veel aandacht wordt besteed aan de mogelijkheid om volledige Nederlandse
en Duitse zinnen te beschrijven—een eigenschap die in de literatuur vaak op zeer
beperkte wijze wordt onderzocht,omdat men alleen kijkt naar ondergeschikte bijzinnen
zoals (23), terwijl declaratieve en interrogatieve vormen zoals (30) en (31) nog meer
verhuizing of niet-projectiviteit introduceren en dus meer eisen lijken te stellen voordat
men kan zeggen dat de gebruikte grammaticaformalismen deze op een verantwoorde
manier beschrijven.

Jan zag Marie koffie drinken(30)

Zag Jan Marie koffie drinken?(31)

II. Computationele uitvoerbaarheid

Het tweede deel houdt zich bezig met de praktische bruikbaarheid van de formalismen
uit deel I op computers. Dit boek concentreert zich hierbij op de opgave om, gegeven
een grammatica, een willekeurige zin te ontleden. Er wordt niet gekeken naar de het
probleem van het genereren van zinnen.

Allereerst wordt voor varianten van LMG (hoofdstuk 5) en XG (hoofdstuk 6)
bewezen dat ze in theoretische zin efficiënt uitvoerbaar zijn op computers. Hiervoor
kijkt men naar zeer abstracte modellen van computers (zogenaamde RANDOM ACCESS

en TURING-machines), en bewijst dat wanneer men de lengte van de ingevoerde zin
laat groeien, de tijd die een ontleedprogramma nodig heeft om de zin te ontleden niet
te drastisch groeit—dit noemt men COMPLEXITEITSANALYSE. Onder drastische groei
verstaat men exponentiële groei, dat wil zeggen dat wanneer een zin 1 woord langer
wordt, het programma twee keer zo veel tijd in beslag zal nemen; acceptabele groei is
bijvoorbeeld wanneer de looptijd van de ontleder op zijn hoogst evenredig is met het
kwadraat, of een willekeurige andere macht, van de lengte van de invoer.
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Tenslotte wordt er in hoofdstuk 7 gekeken naar meer realistische uitvoeringen
van zulke programmatuur, waarbij bovendien rekening wordt gehouden met het feit
dat na een structurele, syntactische analyse van een zin vaak nog eigenschappen als
naamvallen en enkelvoud/meervoud moeten worden gecontroleerd, en tenslotte ook
iets met de ontlede zin gedaan moet worden. Er wordt onder andere beargumenteerd
dat efficiëntie in de praktijk wel dicht bij de eerder besproken theoretische variant ligt,
maar dat ook factoren en ontwerpoverwegingen een rol spelen die door theoretici als
betekenisloos worden beschouwd.

III. Principes

In deel drie wordt een aantal pogingen gedaan om de intu ı̈ties ontwikkeld in delen
I en II op een linguistisch acceptabele manier te formaliseren. Dit gebeurt op drie
manieren.

In hoofdstuk 8 wordt gekeken naar macro-eigenschappen van talen, zoals onder
welke voorwaarden delen van een zin zijn te herhalen om een nieuwe zin te vormen—
denk hierbij aan Jan zei dat Jan zei dat � � � Jan zei dat het een warme dag was—en
wat, volgend uit deze analyse, de precieze klasse van talen moet zijn die in structurele
zin overeenkomt met het begrip ‘natuurlijke taal’.

In hoofdstukken 9 en 10 worden zogenaamde axiomatische systemen opgezet. Het
eerste is een zeer beknopte vorm van CHOMSKY’s GOVERNMENT-BINDING THEORY,
waarvan vervolgens een variant wordt geformuleerd die in LMG kan worden uitge-
drukt en daarmee efficiënt kan worden uitgevoerd op computers. Het tweede systeem,
FREE HEAD GRAMMAR, is een poging tot een axiomatisering te komen die meer direkt
op woordvolgorde is georiënteerd, en daarmee een empirische onderbouwing geeft
voor de manier waarop LMG tegen linguistische structuur aankijkt. In dit laatste
hoofdstuk wordt ook wat uitgebreider ingegaan op de concrete beschrijving van stukken
Nederlands en Latijn.

*

In de Epiloog tenslotte worden de formalismen behandeld in de delen I, II en III
vergeleken met een aantal voor de hand liggende andere onderzoeksgebieden, namelijk
CATEGORIALE GRAMMATICA en TREE ADJOINING GRAMMAR. Tenslotte worden de
conclusies uit de verschillende delen en de Epiloog met elkaar in verband gebracht
door een puntgewijs resumé van de behaalde resultaten.
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